
© 2015 IBM Corporation

DB2 Native Encryption

Russ Perry, Technical Sales Specialist, Mid-Atlantic

August 19, 2015

© 2015 IBM Corporation2

DB2 Native Encryption

DB2 LUW Security Development

3 Main Points

 Helps companies address compliance and security

requirements

 Native, implemented as part of DB2

 Simple to implement and manage

© 2015 IBM Corporation3

Agenda

Why Should We Encrypt Our Databases?

IBM DB2 Native Encryption Overview

Encryption key management

Encrypting DB2 databases

Backup and Restore

Utilities, diagnostics, and other considerations

DB2 LUW Security Development

© 2015 IBM Corporation

Canada:

Personal Information Protection

& Electronics Document Act

USA:

Federal, Financial & Healthcare

Industry Regulations & State Laws

Mexico:

E-Commerce Law

Colombia:

Political Constitution –

Article 15

Brazil:

Constitution, Habeas Data &

Code of Consumer Protection &

Defense

Chile:

Protection of

Personal Data Act
Argentina:

Habeas Data Act

South Africa:

Promotion of Access

to Information Act

United Kingdom:

Data Protection

Act

EU:

Protection

Directive

Switzerland:

Federal Law on

Data Protection

Germany:

Federal Data Protection

Act & State Laws

Poland:

Polish

Constitution

Israel:

Protection of

Privacy Law

Pakistan:

Banking Companies

Ordinance

Russia:

Computerization & Protection of Information

/ Participation in Int'l Info Exchange

China

Commercial

Banking Law

Korea:

3 Acts for Financial

Data Privacy

Hong Kong:

Privacy Ordinance

Taiwan:

Computer- Processed

Personal Data

Protection Law

Japan:

Guidelines for the

Protection of Computer

Processed Personal Data

India:

SEC Board of

India Act

Vietnam:

Banking Law

Philippines:

Secrecy of Bank

Deposit Act

Australia:

Federal Privacy

Amendment Bill

Singapore:

Monetary Authority of

Singapore Act

Indonesia:

Bank Secrecy

Regulation 8

New Zealand:

Privacy Act

Encryption is more than just good business - Often times it is the law

IBM DB2 Native Encryption4

© 2015 IBM Corporation

Why Use Data Encryption?
General requirements

1. Helps Companies meet compliance requirements

 Industry standards such as PCI DSS

 Regulations such as SarbOx, HIPAA

 Corporate standards

2. Protect against threats to online data

 Users accessing database data outside the scope of the DBMS

3. Protect against threats to offline data

 Theft or loss of physical media

IBM DB2 Native Encryption

DB2 native encryption offers many advantages:

• Reduces cost of security and compliance

• Eliminates the need for third-party add-on tools

• Is easily used by DB2 bundlers such as ISVs

• Runs wherever DB2 LUW runs

5

© 2015 IBM Corporation6

Agenda

DB2 LUW Security Development

Why Should We Encrypt Our Databases?

IBM DB2 Native Encryption Overview

Encryption key management

Encrypting DB2 databases

Backup and Restore

Utilities, diagnostics, and other considerations

© 2015 IBM Corporation7

IBM DB2 Native Encryption
Key Points

● DB2 Native Encryption is part of the DB2 database server core capabilities

 As of version 10.5 - Fix Pack 5

 Runs on all 64-bit platforms: AIX, HP-UX, Linux, pLinux, zLinux, Solaris, Windows

 Exploits available HW acceleration (AES encryption only)

● Provides a cost-effective encryption compliance method

 As an advanced edition feature or available separately

 Requires no hardware or software changes

 Provides a secure key management solution

● Protects against physical theft of disk devices as well as backup images

 Using Public Key Cryptography Standard #12 (PKCS#12)

● Requires no schema or application changes

 Is transparent to the end users and applications (requires no changes)

● Compliant, e.g.

 NIST SP 800-131 compliant cryptographic algorithms

 Uses FIPS 140-2 certified encryption

IBM DB2 Native Encryption

© 2015 IBM Corporation8

IBM DB2 Native Encryption Scope
How it works

● The engine encrypts the data before it calls the file system to write to disk

 Current and future data is protected

 A decryption occurs during reads from the file system

● Data is protected in:

 Table space containers (all types and all data, including LOB, XML, etc.)

 Transaction logs

 LOAD copy and LOAD staging tables

 Dump files

 Backup images

● The data encryption is done using a data encryption key

 This DB key is stored and managed in the database itself

● A master encryption key protects the data encryption key

 This master key is stored outside the database in a keystore

IBM DB2 Native Encryption

© 2015 IBM Corporation9

Encryption Key Wrapping

 The process of encrypting one key with another key

 The key encrypting key is typically referred to as a Master Key(MK)

 The MK is typically stored separately from the data system

 The top drivers for this 2- tier encryption approach are:

– Security: Compromise of the data system does not mean compromise of the

data as the MK is stored outside the data system

– Performance: Complying with key rotation requirements does not mean re-

encrypting the actual data; only the Data Encryption Key(DEK) is re-

encrypted with a new MK

 DB2 Implements the industry standard 2-tier model

 Actual data is encrypted with a DEK

 DEK is encrypted with a MK

DB2 LUW Security Development

© 2015 IBM Corporation10

IBM DB2 Native Encryption Overview

DB2 LUW Security Development

Source: www.ibm.com/developerworks/data/library/techarticle/dm-1504-master-encrypted-keys

© 2015 IBM Corporation

IBM DB2 Encryption Offering Licensing

 Included in these Editions

– DB2 Advanced Enterprise Server

– DB2 Advanced Workgroup Server

– Express-C

 License available for these editions:

– DB2 Enterprise Server

– DB2 Workgroup Server

– DB2 Express Server

© 2015 IBM Corporation12

Agenda

DB2 LUW Security Development

Why Should We Encrypt Our Databases?

IBM DB2 Native Encryption Overview

Encryption key management

Encrypting DB2 databases

Backup and Restore

Utilities, diagnostics, and other considerations

© 2015 IBM Corporation13

IBM Global Security Kit

 DB2 Native Encryption uses the IBM Global Security Kit (GSKit) for key

management and encryption

– Installed with DB2 in the sqllib/gskit directory

– GSKit libraries are used to encrypt/decrypt data, create store and manage MKs

– FIPS 140-2 certified

– gsk8capicmd_64 is the command line tool used to manage the keystore

 Public Key Cryptography Standard (PKCS) #12:

– A password-protected keystore with a format for storing encryption keys

– Local keystore file

– Stores MKs

– Can use the same keystore for SSL certificates

DB2 LUW Security Development

© 2015 IBM Corporation14

Keystore creation

 The first step to implementing DB2 Native Encryption is to create a keystore

– Example:

•gsk8capicmd_64 -keydb –create -db ~/db2/db2keys.p12

-type pkcs12

-pw "Str0ngPassw0rd"

-strong -stash

DB2 LUW Security Development

© 2015 IBM Corporation15

Stash File Considerations

 When the -stash option is specified during the create action, an obfuscated

version of the keystore password is stashed in a file:

– <key database name>.sth

 A stash file is used as an automatic way of providing a password

– If a keystore password was not provided during db2start, the password will be

retrieved from the stash file

 The stash file can only be read by the instance owner

– Not stashing the password enhances security if the instance owner account

becomes compromised

– This additional security must be weighed against any requirements that the

DB2 instance can start without human intervention

– If the password is not stashed, you cannot access an encrypted database until

you provide the keystore password.

DB2 LUW Security Development

© 2015 IBM Corporation16

Starting DB2 without a Stash File

 DB2 will start normally (no error condition returned) if a stash file is not present in the system

 Database activation, or applications connecting to encrypted databases will encounter an

error condition:

SQL1728N The command or operation failed because the keystore

could not be accessed. Reason code "3".

 The db2start command must be re-executed with the open keystore option to enable access

to encrypted databases

db2start open keystore USING KeySt0rePassw0rd

 To avoid placing the password on the command line:

db2start open keystore ← will prompt for password

 For scripts of other executables, supply the password through either a temporary file or open

file descriptor

db2start open keystore PASSARG [FILENAME:<value> | FD:<value>]

DB2 LUW Security Development

© 2015 IBM Corporation17

Creating Master Keys

 DB2 may generate MKs for you automatically during:

– Database Creation

– Key rotation

– Restoring into a new database

– Default is AES 256-bit

 This key is used to encrypt the DEK, not the actual database

 You may want to create a MK with a specific label for a number of reasons:

– You want to keep track of the Master Key Labels and their corresponding keys

for offsite recovery without having the entire keystore available on the backup

site

– You have an HADR pair that must have synchronized keys

– You are encrypting a backup for an unencrypted database

DB2 LUW Security Development

© 2015 IBM Corporation18

Creating Master Keys

 A secret key needs to be generated by the user before adding a master key to the

keystore

– The secret key is used to encrypt the DEK

– The strength of the secret key has no relationship to the actual encryption that

takes place within the database

– Recommendation is to use the highest level of AES encryption (256) for the

MK

 Generating a random key

– A key needs to be 16, 24, or 32 bytes wide

• Corresponds to 128, 192, or 256-bit AES keys

– On Linux, UNIX, and AIX use the following command to generate a 32-byte

random string (which will become our MK)

head –c 32 /dev/random >~/db2/mysecretkey

DB2 LUW Security Development

© 2015 IBM Corporation19

Creating Master Keys

 A Master Key Label is used to refer to a Master Key

– Example:

•gsk8capicmd_64 –secretkey –add -db ~/db2/db2keys.p12

-label secret.key

-stashed

-file ~/db2/mysecretkey

DB2 LUW Security Development

© 2015 IBM Corporation20

Listing Master Keys

 You can query the contents of the keystore

– Example:

•gsk8capicmd_64 –cert –list -db ~/db2/db2keys.p12

–stashed

DB2 LUW Security Development

© 2015 IBM Corporation21

Exporting Master Keys

 A secure method of transporting a key to another system to be imported into a

keystore
– Example:

•gsk8capicmd_64 –cert –export -db ~/db2/db2keys.p12

-stashed

-label secret.key

–target ~/db2/exportedkey.p12

–target_type pkcs12

-target_pw Str0ngPassw0rd

DB2 LUW Security Development

© 2015 IBM Corporation22

Importing Master Keys

 A secure method of transporting a key to another system to be imported into a

keystore (target is the destination keystore)

– Example:

•gsk8capicmd_64 –cert –import -db ~/db2/exportedkey.p12

-pw Str0ngPassw0rd

-label secret.key

–target ~/db2/db2keys.p12 –target_type pkcs12

-stashed

DB2 LUW Security Development

© 2015 IBM Corporation23

Registering the Keystore with DB2

 After creating a keystore file, the DB2 instance must be updated with the location and type

of keystore

– Two new configuration parameters

• KEYSTORE_TYPE – Type of keystore being used (either NULL or PKCS12)

• KEYSTORE_LOCATION – Absolute location of the keystore (or NULL if none)

 A DB2 instance can only have one keystore

– The system could have keystores for other applications, but DB2 only supports one

keystore at the instance level

 Best practice is to update both parameters simultaneously

– Example:
• UPDATE DBM CFG USING

KEYSTORE_TYPE PKCS12

KEYSTORE_LOCATION "/home/db2inst1/db2/db2keys.p12"

 To remove a keystore from an instance, set the values to NONE

and NULL

– Example:
• UPDATE DBM CFG USING KEYSTORE_TYPE NONE KEYSTORE_LOCATION NULL

DB2 LUW Security Development

© 2015 IBM Corporation24

Agenda

DB2 LUW Security Development

Why Should We Encrypt Our Databases?

IBM DB2 Native Encryption Overview

Encryption key management

Encrypting DB2 databases

Backup and Restore

Utilities, diagnostics, and other considerations

© 2015 IBM Corporation25

Encrypting DB2 databases

 Once the keystore has been created and registered, and (optional) a MK created,

you can encrypt a database

– Example
•CREATE DATABASE mydb ENCRYPT

•RESTORE DATABASE mydb from /home/db2inst1/db2 ENCRYPT

 The default encryption algorithm is AES 256, but users can select other algorithms

and key lengths if they so desire

– Example
• CREATE DATABASE mydb

ENCRYPT CIPHER AES KEY LENGTH 128

• CREATE DATABASE mydb

ENCRYPT CIPHER 3DES KEY LENGTH 168

• CREATE DATABASE mydb

ENCRYPT CIPHER AES KEY LENGTH 256

MASTER KEY LABEL mylabel

DB2 LUW Security Development

© 2015 IBM Corporation26

Encrypting DB2 databases

 The ENCRYPT keyword options on CREATE/RESTORE to new database command

--+--+

'-ENCRYPT-+------------------------+----+----------------------+-'

'-| Encryption Options |-' '-| Master Key Options |-'

Encryption Options

.-MODE--CBC-.

|--CIPHER--+-AES--+--+-----------+--KEY LENGTH--key-length------|

'-3DES-'

Master Key Options

|--MASTER KEY LABEL--label-name---------------------------------|

 KEY LENGTH

 AES: 128, 192, or 256(default) bits

 3DES: 168 bits

DB2 LUW Security Development

© 2015 IBM Corporation27

Is my database encrypted ?

 To determine if a database is encrypted we can check the “Encrypted database”

database configuration parameter
–Example

•db2 get db cfg | grep -i encrypted

Encrypted database = YES

DB2 LUW Security Development

© 2015 IBM Corporation28

Current database encryption settings

 SELECT * FROM TABLE(SYSPROC.ADMIN_GET_ENCRYPTION_INFO())

DB2 LUW Security Development

© 2015 IBM Corporation29

Master Key Rotation

 The process of changing encryption keys for compliance purposes

– It requires decrypting any DEK encrypted with the old MK and then re-

encrypting it with the new MK

– The data does not get re-encrypted!

 The key rotation frequency depends on the compliance driver

– This generally ranges from once every 3 months to once per year

 The key rotation requirement can be thought of as analogous to the requirement

to change passwords every 90 days

DB2 LUW Security Development

© 2015 IBM Corporation30

Master Key Rotation

 The SYSPROC.ADMIN_ROTATE_MASTER_KEY procedure can be used to

change the database key to comply with key rotation requirement

– You must be connected to the database to run this command
• CALL

SYSPROC.ADMIN_ROTATE_MASTER_KEY('newMasterKeyLabel')

 The SYSPROC.ADMIN_ROTATE_MASTER_KEY procedure re-encrypts the DEK

with the new MK

 DB2 will automatically generate the new MK unless you provide a MK label

 Key rotation is logged in the db2diag.log file:
•grep –A 3 "Key Rotation" ~/sqllib/db2dump/db2diag.log

Key Rotation successful using label:

DATA #2 : String, 46 bytes

DB2_SYSGEN_db2inst1_SECRET_2015-02-09-05.03.12

DB2 LUW Security Development

© 2015 IBM Corporation31

Data Encryption Key Rotation

 The reason an industry standard key encrypting key approach is to avoid a DEK

rotation, however if there is a need to rotate the DEK:

– Take an offline backup

– Drop the database

– Restore to a new encrypted database (this will generate a new DEK).

DB2 LUW Security Development

© 2015 IBM Corporation32

Performance overhead

DB2 LUW Security Development

TPS:

Almost NO difference b/w unencrypted DB vs. Encrypted DB

CPU Usage:

Unencrypted DB / Encrypted DB = 100-103%

TPS vs CPU(us+sy):

Encrypted DB needs a little more CPU(us) than Unencrypted DB

per transaction.

DB2 internal benchmarks show that the encryption overhead is

typically in the single digits for data warehouse workloads on systems

with exploitable hardware acceleration for cryptographic operations.

DB2 Native Encryption automatically detects and exploits a number of

hardware acceleration for cryptographic operations built into modern

CPUs such as Intel AES-NI on current Intel chips

© 2015 IBM Corporation33

Agenda

DB2 LUW Security Development

Why Should We Encrypt Our Databases?

IBM DB2 Native Encryption Overview

Encryption key management

Encrypting DB2 databases

Backup and Restore

Utilities, diagnostics, and other considerations

© 2015 IBM Corporation34

Backup Encryption

 Example:
• BACKUP DATABASE mydb TO /HOME/DB2INST1/DB2

ENCRYPT ENCRLIB 'libdb2encr.so'

ENCROPTS 'Cipher=AES:Key Length=256‘

 ENCRLIB options

 ENCROPTS options: same as for CREATE/RESTORE to new database command

DB2 LUW Security Development

© 2015 IBM Corporation35

Enforce Automatic Backup Encryption

 ENCRLIB and ENCROPTS database configuration parameters

– Set automatically for encrypted databases

–$ db2 get db cfg | grep -i encryption

Encryption Library for Backup (ENCRLIB) = libdb2encr.so

Encryption Options for Backup(ENCROPTS) =

CIPHER=AES:MODE=CBC:KEY LENGTH=256

 Only SECADM can change/turn off the ENCRLIB, ENCROPTS db cfg parameters

 Only when ENCRLIB=NULL, ENCROPTS=NULL and no ENCRLIB and

ENCROPS specified on the BACKUP DATABASE command a DBA can take a

cleartext (not encrypted) backup.

DB2 LUW Security Development

© 2015 IBM Corporation36

Restore Encrypted Backup to Existing Database

 Restoring a backup by replacing an existing database requires no special

parameters

– Keystore must contain the MK that was used to encrypt this backup image

– Cleartext databases with an encrypted backup restore to cleartext databases

• RESTORE DATABASE mydb FROM /home/db2inst1/db2

 RESTORE will use the existing database encryption settings to encrypt the data

being restored

 The encryption settings can not be changed when restoring into an existing

database

DB2 LUW Security Development

© 2015 IBM Corporation37

Restore Encrypted Backup to a New Encrypted Database

 Restoring a backup to a new encrypted database requires that the ENCRYPT

parameter be added to the command

– DB2 needs to create the database before restoring the encrypted copy, and

without the ENCRYPT keyword, the database would not be secure

– Parameters for the ENCRYPT keyword are identical to creating an

encrypted database
•RESTORE DATABASE mydb FROM /home/db2inst1/db2

ENCRLIB ‘libdb2encr.so’ ENCROPTS ‘Master Key

Label=secret1.key’

ENCRYPT

CIPHER AES

KEY LENGTH 128

MASTER KEY LABEL secret2.key

DB2 LUW Security Development

© 2015 IBM Corporation38

Encrypted Backup Settings

 The RESTORE command can extract the backup encryption settings

– The RESTORE command with the show master key details option will prompt

the user if they want to overwrite an existing copy of the database

– Accepting the overwrite will NOT overwrite the database
•RESTORE DATABASE mydb FROM /home/db2inst1/db2

ENCROPTS 'show master key details'

 Encryption settings from the backup will be placed into the db2dump directory

– File with the following name will be generated
<DATABASE>.#.<instance>.<partition>.<timestamp>.masterkeydetails

– The encryption setting parameters are the same as for the database

encryption

• Algorithm

• Key length

• etc

DB2 LUW Security Development

© 2015 IBM Corporation39

Backup on primary site and Restore on backup site

 Create the database and do a backup
• CREATE DATABASE mydb ENCRYPT

• BACKUP DATABASE mydb TO /primary

 Extract the Master Key Label for the keystore
• gsk8capicmd –cert –export –db ~/db2/primary.p12 –stashed

-label secret.key –target secret.p12

-target_type pkcs12 –target_pw Str0ngPassw0rd

 Copy the master key to the backup site and add the key to the backup site keystore
• gsk8capicmd –cert –import –db secret.p12 –pw Str0ngPassw0rd

–stashed -label secret.key -target ~/db2/backup.p12

-target_type pkcs12

 Restore the database
• RESTORE DATABASE mydb FROM /backup ENCRYPT MASTER KEY LABEL

secret.key

DB2 LUW Security Development

© 2015 IBM Corporation40

Agenda

DB2 LUW Security Development

Why Should We Encrypt Our Databases?

IBM DB2 Native Encryption Overview

Encryption key management

Encrypting DB2 databases

Backup and Restore

Utilities, diagnostics, and other considerations

© 2015 IBM Corporation41

HADR Considerations

 Normally both primary and secondary databases are encrypted

– Possible to only have the primary or secondary encrypted

– On HADR startup, an admin warning message will be produced

 Secondary site will be set up as new a database

– Specify encryption options as part of the RESTORE command

– Keystore needs to be available locally

DB2 LUW Security Development

© 2015 IBM Corporation42

Tooling Changes

 Tools with encryption support

– db2cklog

– db2flsn

– db2LogsForRfwd

– db2ckbkp

– db2adutl

– db2dart

 These tools will use the keystore specified in the DBM CFG

KEYSTORE_LOCATION parameter

– Additional arguments used to connect to the keystore if the password is

not stashed
-kspassword password

-kspassarg fd:file_descriptor

filename:file_name

-ksprompt

DB2 LUW Security Development

© 2015 IBM Corporation43

Summary: Enabling Native Encryption on a New Database
Four steps

IBM DB2 Native Encryption

DB2 Native Encryption

setup steps

Commands

Set the paths for the Global

Security Kit (GSKit)

export LD_LIBRARY_PATH=...

export PATH=...

Create a Keystore (using the

GSKit command utility)

gsk8capicmd_64 -keydb –create -db [keystore]...

Configure DB2 instance with

the Keystore information

update dbm cfg using

keystore_type [keytype]

keystore_location [keypath]...

Create the DB2 database

using encryption

create db [dbname] encrypt...

© 2015 IBM Corporation44

Summary: Enabling Native Encryption on an Existing Database
Six steps

IBM DB2 Native Encryption

DB2 Native Encryption

setup steps

Commands

Set the paths for the Global

Security Kit (GSKit)

export LD_LIBRARY_PATH=...

export PATH=...

Create a Keystore (using the

GSKit command utility)

gsk8capicmd_64 -keydb –create -db [keystore]...

Configure DB2 instance with

the Keystore information

update dbm cfg using

keystore_type [keytype]

keystore_location [keypath]...

Back up the database backup db [dbname]...

Drop existing database drop db [dbname]

Restore* the database with

encryption

restore db [dbname] encrypt ...

* You can have on-line off-line backups and use RESTORE, RESTORE with ROLLFORWARD or RECOVER

