
© 2015 IBM Corporation

Scaling up BLU Acceleration with
Consistent Performance in a High
Concurrency Environment

Russ Perry

TRIDUG Mtg, December 9th

Originally Presented at:

• IBM’s statements regarding its plans, directions, and intent are subject to change or withdrawal

without notice at IBM’s sole discretion.

• Information regarding potential future products is intended to outline our general product direction

and it should not be relied on in making a purchasing decision.

• The information mentioned regarding potential future products is not a commitment, promise, or

legal obligation to deliver any material, code or functionality. Information about potential future

products may not be incorporated into any contract.

• The development, release, and timing of any future features or functionality described for our

products remains at our sole discretion.

Performance is based on measurements and projections using standard IBM benchmarks in a

controlled environment. The actual throughput or performance that any user will experience will vary

depending upon many factors, including considerations such as the amount of multiprogramming in the

user’s job stream, the I/O configuration, the storage configuration, and the workload processed.

Therefore, no assurance can be given that an individual user will achieve results similar to those stated

here.

Please Note

2

Agenda

• A Quick Review of the BLU Acceleration Technology

• Handling High Concurrency Environments

• Tuning the Default Workload Management

• Performance Comparison

• Deploying an Optimized Workload Management Configuration

2

A Quick Review of the
BLU Acceleration
Technology

DB2 with BLU Acceleration
Rich capability integrated with IBM DB2 10.5

• In-memory columnar analytic database

• Multiplatform: Supports AIX, Linux, Linux on
System Z, Windows

• Ready for Analytics: Cloud, On premises, SAP,
Cognos, and more

• Agile warehousing via dashDB

Analyze more data faster and

more efficiently

Fast Answers. Simply Delivered.

Super Fast, Super Easy — Create, Load and Go!

No Indexes, No Aggregates, No Tuning, No SQL changes, No schema changes

The DB2 with BLU Acceleration Technology

Instructions Data

Results

C1 C2 C3 C4 C5 C6 C7 C8C1 C2 C3 C4 C5 C6 C7 C8

Dynamic In-Memory
In-memory columnar processing with

dynamic movement of data from storage

Parallel Vector Processing
Multi-core and SIMD parallelism

(Single Instruction Multiple Data)

Data Skipping
Skips unnecessary processing of irrelevant data

Actionable Compression
Patented compression technique that preserves

order so data can be used without decompressing

Encoded

Simplification of Analytic Operations

Create

Load

GO!

1. Create Table

2. Load data

AFTER

DB2 with BLU Acceleration

1. Decide on partition strategies

2. Select Compression Strategy

3. Create Table

4. Load data

5. Create Auxiliary Performance Structures

• Materialized views

• Create indexes

• B+ indexes

• Bitmap indexes

6. Tune memory

7. Tune I/O

8. Add Optimizer hints

9. Statistics collection

Traditional Warehouse

Database Design and Tuning

Repeat

 Instant insight from real-time operational data

for growing revenue, reducing cost and lowering risk

 35x to 73x faster analytics, with some queries running

more than 1400x faster1,2

 Next generation in-memory with IBM Research innovations

 Simplified IT landscape with reporting and transactions

in the same system

 No need for indexes, aggregates or tuning

 Operational simplicity with “load and go” performance

 Available for on-premises or via the cloud

 “In one of our largest customer databases, we saw a compression ranging from 7x

to 20x as compared to the uncompressed tables ” - Mike Petkau, Director of Database

Architecture & Administration, TMW Systems

 Simple, low-risk upgrade from Oracle Database
1 Based on internal IBM testing of sample client analytic workloads comparing queries accessing row-based tables on DB2 10.1 vs. columnar tables on DB2 10.5 with BLU Acceleration. Performance improvement figures are cumulative of all queries in the

workload. Individual results will vary depending on individual workloads, configurations and conditions.
2 Based on internal IBM tests of analytic workloads comparing queries accessing row-based tables on DB2 10.1 vs. columnar tables on DB2 10.5 with BLU Acceleration. Results not typical. Individual results will vary depending on individual workloads,

configurations and conditions, including size and content of the table, and number of elements being queried from a given table..

Fast Answers. Simply Delivered.

The Benefits of DB2 with BLU Acceleration for
Analytics

Fast

Simple Agile

DB2 with BLU

Acceleration

Handling High
Concurrency
Workloads

Resource Usage and Concurrency

 BLU philosophy is to leverage full machine
resources (memory, CPU capacity) in order to
achieve order of magnitude performance benefits.

 A consequence of this is that running too many
columnar queries at a time can lead to significant
resource competition and degrade performance

 Too many queries executing at a time can also have
the potential to overload system resources and
cause failures.

 Some form of admission control is needed to ensure
orderly and efficient execution of columnar queries(!)

 Most working memory for BLU queries comes from database
sort memory

 SHEAPTHRES_SHR (total available working memory)

 SORTHEAP (memory per operator: group-by, join, vector buffering, configured
based on expected concurrency)

(…)

CTQ

(5)

|

GRPBY

(6)

|

^HSJOIN

(8)

/---------+---------\

TBSCAN TBSCAN

CO-TABLE: f CO-TABLE: c

More Detail: Memory Considerations

SHEAPTHRES_SHR

SORTHEAP

Memory and Concurrency without Workload
Management

 Each query consumes 1-3x short heaps for sort,
join, buffer operations.

 Concurrent queries multiply memory
requirements.

 As multiple queries execute, less memory is
available to each operation.

 Operation processing no longer fits in available
memory.

 With sort memory exhausted, intermediate results
cache to disk, causing ‘spilling’ to occur
(significant negative performance impact!)

 If concurrency exceeds level configured for
SORTHEAP we can exhaust
SHEAPTHRES_SHR. This will cause queries to
fail.

 Result is that allowing unmanaged admission
can significantly degrade performance and
even put system stability at risk!

Solution: Default Workload Management

 Allow unlimited query concurrency from a
user perspective

 Internally manage query execution so that
we execute only a limited number of queries
at a time

 Prevents overload / system remains robust in face
of heavy workloads; SORTHEAP can be tuned
with predictable concurrency limits in mind

 Optimizes performance; ensures that when
queries execute we have sufficient resources for
them to complete quickly (allows more memory
and more intra-query parallelism without causing
spilling or overloading the processor run queues)

Default Workload Management

User Requests
DB2

Default

Workload

Default User Service Class

Default Subclass
(Unmanaged /

Lightweight Queries)

Default

“Managed”

Subclass
(Managed /

Heavyweight

Read Queries)

Cost?

Concurrency
Threshold

Limit = N

Read DML w/ query
cost estimate >
150000 timerons
mapped to managed
class

Amount of
executing work
managed based on
its resource
footprint

Default Workload Management Explained

• Lightweight queries can enter the system freely

 Minimizes latency for short queries (< 150000 timerons)

 Ensures small queries aren’t queued behind long ones

• Limited number of heavyweight queries allowed to execute at a
time

 Controls impact of heavyweight queries (>= 150000 timerons)

 Limit calculated based on hardware during database deployment

• Non-DML activities continue to run unmanaged by default

 Current Default Workload Management is focused specifically on the
impacts of large columnar analytic queries

• End result is simple and effective (if not completely optimal)
workload management out of the box

14

Result: Unlimited Concurrency with
“Automatic” WLM

.

.

.

Applications and Users

Up to tens of thousands of

SQL queries at once

DB2 DBMS kernel

SQL Queries

Moderate number of

queries consume resources

Tuning the Default
Workload Management

Opportunities for Tuning

 Default Workload Management in BLU is a relatively
“blunt” instrument

 Goal is to provide system stability and reasonable
performance out of the box

 Better than an unmanaged environment but lots of
opportunity to optimize behavior with a little bit of
tuning if desired

 This section will work through some simple steps
you can take to optimize BLU execution for your
environment

Querying the Default Workload Management
Settings

• Examine the default estimated cost setting

• Examine the default concurrency threshold settings

SELECT MAXVALUE, ENABLED

FROM SYSCAT.THRESHOLDS

WHERE THRESHOLDNAME = 'SYSDEFAULTCONCURRENT‘

SELECT VALUE1 AS EXPENSIVE_QUERY_COST

FROM SYSCAT.WORKCLASSATTRIBUTES

WHERE WORKCLASSNAME = 'SYSMANAGEDQUERIES' AND TYPE = 'TIMERONCOST‘

MAXVALUE ENABLED

-------------------- -------

11 Y

EXPENSIVE_QUERY_COST

+1.50000000000000E+005

Tuning the Managed Query Timeron Cost

 Intention behind the default query cost level is to
identify higher cost queries that both consume more
resources and are less sensitive to response times

 Default value was selected based on a suite of
representative workloads

 Intended as a “best fit” but will not be optimal for all
environments

 Timeron cost is also not a “perfect” metric

 This section will show how the value can be tailored
more specifically for your own environment

“How many queries are above / below the
cost line?”

with smallcost as

(

select sum(num_coord_exec) as smallcost from

table(mon_get_pkg_cache_stmt(null,null,null,-2))

where query_cost_estimate < 150000

),

smalltime as

(

select sum(num_coord_exec) as smalltime from

table(mon_get_pkg_cache_stmt(null,null,null,-2))

where (coord_stmt_exec_time / nullif(num_coord_exec,0)) < 30

),

total as

(

select sum(num_coord_exec) as total

from table(mon_get_pkg_cache_stmt(null,null,null,-2))

)

select (smallcost * 100) / total as pctsmallcost,

(smalltime * 100) / total as pctsmalltime

from smallcost, smalltime, total;

PCTSMALLCOST PCTSMALLTIME

------------ ------------

30 50

Count of queries below
timeron threshold

Count of queries that
execute for less than 30
seconds (“short” queries)

Total number of query
executions on the system

About 30% of our queries are running
“unmanaged” but 50% of our queries are
“short running”

Adjusting the Timeron Cost Threshold

ALTER WORK CLASS SET SYSDEFAULTUSERWCS

ALTER WORK CLASS SYSMANAGEDQUERIES

FOR TIMERONCOST FROM 200000 TO UNBOUNDED

Queries shorter
than 30 secs

Shorter / Smaller Queries

Longer / Larger Queries

Adjust cost

Query cost = 150000

Adjust the cost
so that queries
that run for
less than 30

seconds are not
controlled

Increased from 150000

Tuning the SORTHEAP parameter

 Having an appropriate SORTHEAP setting is critical to getting
optimal performance out of your BLU environment.

 SHEAPTHRES_SHR set based on physical RAM on your
system (anywhere from 1/3 to 1/2 is appropriate for BLU)

 SORTHEAP on the other hand depends on your workload

 Default settings are computed based on general assumptions
about memory availability and concurrency on your system

 Reasonable but not always optimal

 With a bit of tuning you can get more bang for your buck

 So how do we go about selecting our SORTHEAP?

“What percentage of my ‘sort’ operations are spilling”

with ops as

(select

(total_sorts + total_hash_joins + total_hash_grpbys)

as sort_ops,

(sort_overflows + hash_join_overflows + hash_grpby_overflows)

as overflows

from table(mon_get_database(-2)))

select sort_ops,

overflows,

(overflows * 100) / nullif(sort_ops,0) as pctoverflow

from ops;

SORT_OPS OVERFLOWS PCTOVERFLOW

------------ ------------ -----------

1200 300 25

About 25% of our sort operations
overflowed and spilled.

db2 update db cfg using SORTHEAP 2097152

Increasing SORTHEAP will reduce
spilling but we can’t make this change
in a vacuum. Need to consider the
impacts on concurrency.

Extract total
sorts and sort

overflows

Tuning the Default Concurrency Level

 The default concurrency limit for the managed
subclass is computed based on system hardware
and with awareness of the default recommended
SORTHEAP / SHEAPTHRES_SHR ratio of 1:20.

 If we increase our SORTHEAP we need to also
adjust the concurrency level accordingly to avoid
overloading SHEAPTHRES_SHR and causing query
failures

 This next example will walk through how to compute
and perform these adjustments

select avg(sort_shrheap_top) as avg_mem

from

table (mon_get_pkg_cache_stmt(null,null,null,-2))

where query_cost_estimate > 150000;

AVG_MEM

132568

On average my heavier
queries consume 132568

pages (4K) of sort memory

ALTER THRESHOLD SYSDEFAULTCONCURRENT

WHEN CONCURRENTDBCOORDACTIVITIES > <N>

CONTINUE

As a rule of thumb start with a
concurrency limit of

(SHEAPTHRES_SHR / AVG_MEM) *
0.75

Tuning the Default Concurrency Level

To be safe leave a 25% buffer for
workload fluctuations

A Bit More Fine Tuning

1. Look at the actual overall sort consumption vs. SHEAPTHRES_SHR

2. Compute M = ((SHEAPTHRES_SHR / SORT_SHRHEAP_TOP) – 1)

3. Consider increasing concurrency threshold further if M is large percentage

 Final notes:

 Always leave some room for workload variation

 Always validate new settings in your test environment first!

ALTER THRESHOLD SYSDEFAULTCONCURRENT

WHEN CONCURRENTDBCOORDACTIVITIES > <N *(1+(M/2))>

CONTINUE

select sort_shrheap_top from table(mon_get_database(-2))

SORT_SHRHEAP_TOP

6553600

Reported in 4K pages = 25GB HWM

Performance
Comparison

Test Environment

 Platform: Softlayer bare metal system

 Database size: 4 TB

 Workload: BD Insights

 IBM developed benchmark which simulates real-world business
analytics

 Consists of 30 queries which can be divided into two categories

 Queries which represent typical analytic queries used to generate
sales reports

 Queries which represent hand-crafted, deep-dive analytic queries
created by sales analysts

 60 user-streams

28

Performance Results

29

0

50

100

150

200

250

300

No WLM Default WLM Tuned WLM

T
h

ro
u

g
h

p
u

t
(#

q
u

e
ri

e
s
/h

r)

60-user Concurrency Run

No WLM Default WLM Tuned WLM

CPU utilization 76% 73% 87%

~87 out-of-sortheap

query failures (!)

17% faster

than default(!)

Better CPU

Utilization (!)

Key Takeaways

• BLU Acceleration allows you to achieve an order of magnitude
speedup for your analytic workloads

• Controlling admission of heavyweight queries is a must to
maintain a stable system in the face of a highly concurrent
enterprise scale workload

• We introduced default workload management with BLU to
protect your system from being overloaded in the face of high
concurrency

• You can use the techniques in this session to fine tune your
configuration to squeeze even more performance out of your
environment

30

31

Notices and Disclaimers

Copyright © 2015 by International Business Machines Corporation (IBM). No part of this document may be reproduced or transmitted in any form

without written permission from IBM.

U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM.

Information in these presentations (including information relating to products that have not yet been announced by IBM) has been reviewed for

accuracy as of the date of initial publication and could include unintentional technical or typographical errors. IBM shall have no responsibility to

update this information. THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER EXPRESS OR IMPLIED. IN NO

EVENT SHALL IBM BE LIABLE FOR ANY DAMAGE ARISING FROM THE USE OF THIS INFORMATION, INCLUDING BUT NOT LIMITED TO,

LOSS OF DATA, BUSINESS INTERRUPTION, LOSS OF PROFIT OR LOSS OF OPPORTUNITY. IBM products and services are warranted

according to the terms and conditions of the agreements under which they are provided.

Any statements regarding IBM's future direction, intent or product plans are subject to change or withdrawal without notice.

Performance data contained herein was generally obtained in a controlled, isolated environments. Customer examples are presented as

illustrations of how those customers have used IBM products and the results they may have achieved. Actual performance, cost, savings or other

results in other operating environments may vary.

References in this document to IBM products, programs, or services does not imply that IBM intends to make such products, programs or services

available in all countries in which IBM operates or does business.

Workshops, sessions and associated materials may have been prepared by independent session speakers, and do not necessarily reflect the

views of IBM. All materials and discussions are provided for informational purposes only, and are neither intended to, nor shall constitute legal or

other guidance or advice to any individual participant or their specific situation.

It is the customer’s responsibility to insure its own compliance with legal requirements and to obtain advice of competent legal counsel as to the

identification and interpretation of any relevant laws and regulatory requirements that may affect the customer’s business and any actions the

customer may need to take to comply with such laws. IBM does not provide legal advice or represent or warrant that its services or products will

ensure that the customer is in compliance with any law.

32

Notices and Disclaimers (con’t)

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly

available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance,

compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products. IBM does not warrant the quality of any third-party products, or the ability of any such third-party products to

interoperate with IBM’s products. IBM EXPRESSLY DISCLAIMS ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents, copyrights,

trademarks or other intellectual property right.

• IBM, the IBM logo, ibm.com, Aspera®, Bluemix, Blueworks Live, CICS, Clearcase, Cognos®, DOORS®, Emptoris®, Enterprise Document

Management System™, FASP®, FileNet®, Global Business Services ®, Global Technology Services ®, IBM ExperienceOne™, IBM

SmartCloud®, IBM Social Business®, Information on Demand, ILOG, Maximo®, MQIntegrator®, MQSeries®, Netcool®, OMEGAMON,

OpenPower, PureAnalytics™, PureApplication®, pureCluster™, PureCoverage®, PureData®, PureExperience®, PureFlex®, pureQuery®,

pureScale®, PureSystems®, QRadar®, Rational®, Rhapsody®, Smarter Commerce®, SoDA, SPSS, Sterling Commerce®, StoredIQ,

Tealeaf®, Tivoli®, Trusteer®, Unica®, urban{code}®, Watson, WebSphere®, Worklight®, X-Force® and System z® Z/OS, are trademarks of

International Business Machines Corporation, registered in many jurisdictions worldwide. Other product and service names might be

trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at "Copyright and trademark information" at:

www.ibm.com/legal/copytrade.shtml.

http://www.ibm.com/legal/copytrade.shtml

© 2015 IBM Corporation

Thank You

Supplementary:
Deploying an
Optimized Workload
Management
Configuration

Taking things a step further

• We’ve discussed a number of ways to tune the BLU runtime
environment by adjusting the default workload management
settings.

• Another path that can be taken is to deploy a more customized
workload management environment that can offer finer grained
control and hence better performance

• Goal is to tailor admission and runtime control more specifically
to different classes of work and achieve resulting efficiency
benefits / avoid inefficiencies

 For example lighter queries queued behind heavyweight queries

• Recommended for environments where

 Workload is very dynamic with a wide range of query types

 Query concurrency is relatively high

 Query workload must coexist with potentially heavy ingest jobs

 The system needs to meet specific performance goals

• This section will explore the deployment of this type of
environment in detail

Taking things a step further (cont’d)

Optimized WLM Configuration

User Requests
DB2

Default

Workload

Default User Service Class

(Inactive)

Service Super Class

Default Subclass

(unmanaged)

Medium Subclass
(Managed / Medium

size read queries)

Load

Complex Subclass
(Managed / Large size

read queries)

Cost?

Query Cost > 150000
timerons

Load activities

Work is routed to
one of several
service classes
based on query cost
and type

Query Cost > 5000000
timerons

Key Points

• Core DML workload is divided into several different “lanes”
based on query cost

 Group queries with like response times together and assign them
a proportion of system resources

 Admit queries to each lane based on their allocated resources

 Ensure reliable throughput rate for different classes of queries via
fast / medium / slow lanes

 Applies to both read + write activities in the system

• Load concurrency explicitly controlled

• DDL and most administrative tasks run unmanaged

• For stored procedures, nested SQL statements are managed
individually

Creating the WLM Environment

create service class MASTER

create service class COMPLEX under MASTER

create service class MEDIUM under MASTER

create service class LOAD under MASTER

alter workload SYSDEFAULTUSERWORKLOAD service class MASTER

create threshold MEDIUM_DML_CONCURRENCY

for service class MEDIUM_DML under MASTER activities enforcement database enable

when concurrentdbcoordactivities > <X> and queued activities unbounded continue

create threshold COMPLEX_DML_CONCURRENCY

for service class COMPLEX_DML under MASTER activities enforcement database enable

when concurrentdbcoordactivities > <Y> and queued activities unbounded continue

create threshold LOAD_CONCURRENCY

for service class LOAD under MASTER activities enforcement database enable

when concurrentdbcoordactivities > 4 and queued activities unbounded continue

Create service
classes

Create query
concurrency
thresholds

We will come back
to the query
concurrency limits

1. Setting up service classes and thresholds

WLM Best
Practices default
template limit

Creating the WLM Environment

create work action set WORK_ACTIONS

for service class MASTER using work class set WORK_CLASSES

(

work action map_medium_cost on work class medium_cost

map activity without nested to MEDIUM,

work action map_complex_cost on work class complex_cost

map activity without nested to COMPLEX,

work action map_load on work class load

map activity without nested to LOAD

)

create work class set WORK_CLASSES (

work class medium_cost work type read dml

for timeroncost from 150000.0 to 5000000.0,

work class complex_cost work type read dml

for timeroncost from 5000000.0 to unbounded,

work class load work type load)

Work classification

Mapping based on
classification

Timeron ranges

2. Setting up the mappings

Applying Admission Control

User Requests

Default

Workload

Service Super Class

Default Subclass

(unmanaged)

Medium Subclass
(Managed / Medium

size read queries)

Load

Complex Subclass
(Managed / Large size

read queries)

Cost? Unmanaged = 10%

Complex = 55%

Medium = 35%

1. Figure out what percentage of SHEAPTHRES_SHR to assign to
each service class

Doesn’t use sort
memory

Applying Admission Control

2. Figure out query sort consumption per query per service class

3. Compute query concurrency each service class can
accommodate within their portion of SHEAPTHRES_SHR
• Nmedium = (SHEAPTHRES_SHR / AVG_MEM_MEDIUM) * 0.35 * 0.75

• Ncomplex = (SHEAPTHRES_SHR / AVG_MEM_COMPLEX) * 0.55 * 0.75

select avg(sort_shrheap_top) as avg_mem_medium

from

table (mon_get_pkg_cache_stmt(null,null,null,-2))

where query_cost_estimate > 150000 and

query_cost_estimate < 500000;

select avg(sort_shrheap_top) as avg_mem_complex

from

table (mon_get_pkg_cache_stmt(null,null,null,-2))

where query_cost_estimate >= 500000;

Medium queries

Complex queries

To be safe
leave a 25%
buffer for
workload
fluctuations

4. Set the concurrency limits for each service class

5. Monitor sort consumption in each service class

ALTER THRESHOLD MEDIUM_DML_CONCURRENCY WHEN

CONCURRENTDBCOORDACTIVITIES > <Nmedium> CONTINUE

ALTER THRESHOLD COMPLEX_DML_CONCURRENCY WHEN

CONCURRENTDBCOORDACTIVITIES > <Ncomplex> CONTINUE

select service_subclass_name, sort_shrheap_top from

table(mon_get_service_subclass(‘MASTER’,NULL,-2)

Applying Admission Control

6. Compute excess capacity for each service class
• Mmedium = ((SHEAPTHRES_SHR * 0.35 / <sort_shrheap_topmedium>) -1

• Mcomplex = ((SHEAPTHRES_SHR * 0.55 / <sort_shrheap_topcomplex>) -1

7. Fine tune concurrency limits

• Remember above that we leave some room for workload variation

ALTER THRESHOLD MEDIUM_DML_CONCURRENCY WHEN

CONCURRENTDBCOORDACTIVITIES > <Nmedium * (1+(Mmedium/2)> CONTINUE

ALTER THRESHOLD COMPLEX_DML_CONCURRENCY WHEN

CONCURRENTDBCOORDACTIVITIES > <Ncomplex * (1+(Mcomplex/2)> CONTINUE

Applying Admission Control

Benefits of the Optimized Configuration

 More granular query classes mean more tailored / optimal
performance

 Greater concurrency possible for mid-range queries leading to
improved response times

 Lower concurrency for the most heavyweight queries minimizes
their impact on the performance of lightweight and mid-range
queries.

 Less variation in memory consumption within each class means
we can apply more efficient limits

 Granularity also allows more detailed workload monitoring

 Each query class can be monitored and configured separately

 Including management of Load type activities provides more
predictable performance when operational updates are
expected on a live system

