
© 2014 IBM Corporation

NoSQL – Is This The End Of SQL?

Chris Eaton
Worldwide Information Management Technical Specialist
IBM Toronto Lab
ceaton@ca.ibm.com

2 © 2014 IBM Corporation

The Database Market and Choice

You are here

3 © 2014 IBM Corporation

Agenda

� The NoSQL World

� What is JSON and Why Should I Care

� JSON in the Enterprise

� The Biggest Thing In the NoSQL World
– psst – it’s your specialty

© 2014 IBM Corporation

The NoSQL World

5 © 2014 IBM Corporation

What is NoSQL?

� Over 122+ open source NoSQL
databases at last count

– Four dominant ‘flavors’
– Key|Value, Document, and Columnar focused

on what folks familiar with RDBMSs do for
BI and OLTP

– Graph stores doesn’t do your typical RDBMS
OLTP or BI, but it’s pretty pervasive because it
has some powerful analytics and reasoning
engine capabilities

� Some have a fair amount of traction, most
are on the decline and aren’t going
anywhere (if there’s a 122 of something,
they are not all going to survive)

6 © 2014 IBM Corporation

What is NoSQL?

� Key Value Stores
– Hash table of keys, where the data part of

key-value is in a binary object
– Examples pure key-value stores : MemcacheD,

REDIS, WebSphere eXtreme Scale

� Document Stores
– Stores documents made up of tagged elements,

which have keys and document-like objects
– Examples : MongoDB, couchDB, Cloudent

� Column Family
– Each storage block contains data from only one

column/column set
– Examples : HBase, Cassandra, BLU

Acceleration

� Graph Store
– Key-values are related through graph structure
– Common Model : RDF
– Examples : Jena, Sesame, DB2 RDF store

122+ NoSQL Database
Offerings Today!

Dominant Flavors

� Many apps need fewer database features (simplicity)
� Need rapid application evolution/deployment, with minimal

interaction with DBA
� Some apps need extremely high scale (e.g. Twitter)
� Need for a low-latency, low-overhead API to access data
� Increasing use of distributed analytics

Motivation

7 © 2014 IBM Corporation

Database Genres
D

a
ta

 S
iz

e

Data Complexity

Relational

RDBMS databases arose in the world where query
flexibility was more important than flexible schemas.
Set based systems. 2-D tables instantiated as tables
and columns. Interaction is via SQL. Data values are
typed and enforced by the system. Tables can be
joined and morph into complex tables via set theory.

KEY
VALUE

Pairs keys to values – like a hash table in
computer programming. Analogy is a files
system; the path is the key and the
contents is the file. KV database are
incredibly performant, but not helpful for
complex query and aggregations.

Columnar

Data is stored by column. Adding a
column is inexpensive and done on a
row-by-row basis. Each row can have
a different set of columns or none at
all. This allows tables to remain
sparse without incurring a storage
cost for NULLs.

Document

It’s like a hash: has a unique ID field and
value that be any variety of types,
including more hashes. Documents can
contain nested structures. They impose
few restrictions on incoming data as
long as it meets the basic document
expression requirements. Different
document database take a different
approaches to things like indexing.
These differences will affect your use
cases.

Graph

Least used genre of NoSQL
databases. Excels at dealing
with interconnected data. It
consists of relationships
between nodes. Both nodes
and relationship can have
properties - key value pairs –
that store data. The real
strength of a graph database
is traversing through the
nodes by following
relationships.

8 © 2014 IBM Corporation

What is a Graph Store – RDF Example

� RDF provides a general method to decompose any information into
pieces called triples.
– Each triple is of the form ‘Subject’ , ‘Predicate’, ‘Object’.

• Subject and Object are the names for 2 things in the world
• Predicate, the relationship between them

– Subject, Predicate, Object are given as URI’s
• stand-ins for things in the real world

– Object can additionally be raw text

In technical terms a labeled directed graph, where each edge is a triple

9 © 2014 IBM Corporation

RDF Example

IBM ABC
has supplier

Websphere DB2 Supplier

sells

is a

uses
is a

Company

sells

Software

is is

XYZ

is a is subsidiary of

is a

…

SUBJECT PREDICATE OBJECT

IBM is a Company

…

……

IBM has supplier ABC

ABC is a Company

IBM sells DB2

IBM sells Webshere

ABC uses DB2

ABC is subsidiary of XYZ

XYZ is a Company

… … …

10 © 2014 IBM Corporation

SPARQL: SPARQL Protocol and RDF Query Language

� SPARQL : A subgraph pattern matching
query language

� Example:
"Find all companies that sell a product
to a supplier"

� Result:

IBM ABC
has supplier

Websphere DB2 Supplier

sells

is a

uses
is a

Company

sells

Software

is is

XYZ

is a is subsidiary of

is a

…

…

……
SELECT ?comp, ?product, ?supplier
WHERE { ?comp <isA> <Company>

?comp <sells> <?product>
?comp <hasSupplier> <?supplier>
?supplier <uses> <?product>

}

? ?
has supplier

?

sells

is a

uses

Company

?comp – IBM
?product – DB2
?supplier – ABC

IBM ABC

DB2

11 © 2014 IBM Corporation

New Era Application Characteristics

� Today’s applications evolve rapidly in a social-mobile-cloud world in
order to keep pace with the Internet users they serve

� Developers want nearly continuous integration of app changes
– Performance to a DBA : SLA – how fast is it running
– Performance to a Developer : How fast can I build my application

� Developers ‘resist’ solutions that require delays to sync up
with change windows

– NoSQL JSON stores appeal to these developers since they can evolve
the app rapidly without DB or data modeler intervention

– Objects like “Shopping Cart” aren’t used outside Web app so why the need to
interlock with the enterprise data mode

12 © 2014 IBM Corporation

13 © 2014 IBM Corporation

Characteristics of NoSQL: Data Model Flexibility

� Amazon web site is made up of dozens of
applications that appear a single web page

� 1000s of developers work on these applications
and all are empowered to make code changes
without checks and balances
– No approval needed to integrate your code: just pass regression test and new

code is auto-deployed across all servers running Amazon.com
• Code first lightly deployed to a few servers: if all is well, aggressive deployment
• After a few days, the 1000s of Amazon.com servers have completed changes

� Amazon makes changes dozens to hundreds of times a day
– Don’t have a freeze period during peak shopping periods such as Thanksgiving
– On the night before Christmas when all through labs….

� Compare approach to typical development shops (i.e. IBM)
– This approach not allowed
– SVT and FVT check a developer’s work, a decision board decides when the

right time is to add the enhancements to the code base, +++

14 © 2014 IBM Corporation

� Amazon.com experiences an average of 5 issues
for every 1000 changes!
– This is a much higher success ratio than almost any

development team I’ve come across

� Many CIOs are looking at Amazon, Google, +++ and know they have
much lighter volumes and HA requirements: leaves them wondering
why can’t they use this approach
– Can’t really do this in RDBMS world since the continuous integration will likely

involves a schema schema change
• Need DBA to do the ALTER or CREATE table statement, built indexes, +++

• DBA is going to want to wait for a change window

� In NoSQL world, developers make their own code changes and can
likely change schema without getting a DBA involved
– Developer simply covers ‘all their bases’

• Make sure the find all places in code with dependency on schema change and mix it into
the code change for continuous integration

• Check in immediate rules (48 hours) keep the code ‘fresh’ in mind

Wait a Minute! What About Stability?

© 2014 IBM Corporation

50% of Mobile Apps use JSON
Data Store. What is JSON?

16 © 2014 IBM Corporation

JSON and XML

� JSON stands for JavaScript Object Notation
– JSON is lightweight text-data interchange format
– JSON is language independent and object base (how programmers think)

• JSON uses JavaScript syntax for describing data objects, but JSON is still language
and platform independent

• JSON parsers and JSON libraries exist for many different programming languages

� Much Like XML
– JSON is plain text
– JSON is "self-describing” and easy to understand (human readable)
– JSON is hierarchical (values within values)
– JSON can be parsed by JavaScript and transported using AJAX

� Much Unlike XML
– No end tag
– Shorter and more compact � Fewer bits to send over the wire in a mobile world
– Quicker to read and write
– Can be parsed using built-in JavaScript eval()

– Uses arrays
– No reserved words

17 © 2014 IBM Corporation

Why is JSON Easier?

� JSON, unlike XML, doesn’t try to be a document markup language
and a data exchange language

� For AJAX applications, JSON is faster and easier than XML and has
an object feel
– JSON text format is syntactically identical to the code for JavaScript objects
– Because of this similarity, instead of using a parser, a JavaScript program can

use the built-in eval() function and execute JSON data to produce native

JavaScript objects

� Using XML
– Fetch an XML document
– Use XML DOM to loop through the document
– Extract values and store in variables

� Using JSON
– Fetch a JSON string
– eval() the JSON string

18 © 2014 IBM Corporation

JSON is the Storage Notation

� JSON syntax is a subset of the JavaScript object notation syntax:
– Data is in name/value pairs

• A name/value pair consists of a field name (in double quotes), followed by a colon,
followed by a value

"firstName" : "John” � JSON
firstName = “John” � JavaScript

– Data is separated by commas
– Curly braces hold objects
– Square brackets hold arrays

� JSON values are simple – 6 choices
1. A number (integer or floating point)
2. A string (in double quotes)
3. A Boolean (true or false)
4. An array (in square brackets)
5. An object (in curly brackets)
6. NULL

19 © 2014 IBM Corporation

Tell Me Some About JSON

� JSON objects are written inside curly brackets which can contain
multiple name/value pairs
– As you can see, it’s simple to understand

{ "firstName":"John" , "lastName":"Doe" }

� JSON arrays are written inside square brackets and can contain
multiple objects
– Here is the Employees array which contains three objects that represent a

person with a first and last name

{

"employees": [

{ "firstName":"John" , "lastName":"Doe" },

{ "firstName":"Anna" , "lastName":"Smith" },

{ "firstName":"Peter" , "lastName":"Jones" }

]

}

20 © 2014 IBM Corporation

Tell Me Some About JSON

� Because JSON uses JavaScript syntax, you don’t need extra
software to work with JSON within JavaScript
– Also support on almost every other relevant programming language: node.js,

PHP, Python, Ruby, C, C++, Perl, +++

� JavaScript: create an array of objects and assign data on the fly

var employees = [

{ "firstName":"John" , "lastName":"Doe" },

{ "firstName":"Anna" , "lastName":"Smith" },

{ "firstName":"Peter" , "lastName": "Jones" }

];

� Access the first entry in the JavaScript object array
Employees[0].lastName;

� Modify the data
employees[0].firstName = "Jonathan";

© 2014 IBM Corporation

JSON Role in an Enterprise

22 © 2014 IBM Corporation

Typical JSON Open Source Datastore Attributes

� Logging is often turned off to improve performance

� By default, no return code on insert (a.k.a. "fire and forget")
– App must verify update was performed

� Data is sharded for scalability
– Shards are replicated asynchronously for availability
– Queries to replica nodes can return back-level data sometimes…

� No concept of commit or rollback
– Each JSON update is independent
– No document-level locking
– App must manage a "revision" tag to detect document update conflicts
– Applications have to implement compensation logic to update multiple

documents with ACID properties

� JSON documents are stored in collections
– But no "join" across collections

� No document-level or tag-level security

� No built-in temporal or geo-spatial query support

23 © 2014 IBM Corporation

What is JSON’s Role in the Enterprise?

� Flexible Schema is agile, liberating for application developers

� But will we abandon years of expertise in data modeling? No…
– How to maintain control in an enterprise, mission critical DBMS?

� Identification of appropriate applications is critical

� Schema controls moves to application development here
– Application deployment procedures need to adapt
– New controls to prevent schema chaos
– Application Development Groups need to implement controls

� When combining with application that uses relational schema
– Identify portions that need to remain dynamic
– Allocate / accommodate space for that as JSON

24 © 2014 IBM Corporation

What Data Store Format Makes Sense For Your Application?

� Consider NoSQL JSON when:

– Application and schema subject to frequent changes

– Prototyping, early stages of application development where the schema is changing a lot and
you’re trying to figure out what the important fields are

– De-normalized data has advantages

• Entity / document is in the form you want to save

• Read efficiency – return in one fetch without sorting, grouping or ORM mapping

– “Systems of Engagement” such as social media and where eventual consistency is fine

• Less stringent “CAP” requirements in favor of speed

� Consistency - all nodes see the same data at the same time

� Availability - guarantee that every request receives a response on if it was successful or failed

� Partition tolerance - system continues to operate despite arbitrary message loss or failure

• Storing entries from social media doesn’t have same requirements as transactional data

� Relational still best suited when these are critical:

– Data Normalization to eliminate redundancy and ensure master data consistency

– Database enforced constraints

– Database-server JOINs on secondary indexes

25 © 2014 IBM Corporation

Data Normalization - Choose the Right Solution

Relational

Very simple normalized schema (from
DB2 SAMPLE database) with relational
integrity constraints:

NoSQL JSON - Two approaches:

Embedded (de-normalized)

Using references

{dept: “A10”,
deptname:”Shipping”,
manager:”Samuel”,
emp:[

{empno:”000999”,
lastname:”Harrison”,
edlevel:”16”},

{empno:”370001”,
lastname:”Davis”,
edlevel:”12”}

]
proj:[

{projno:”397”,
projname:”Site Renovation”,
respemp:”370001” },

{projno:”397”,
projname:”Site Renovation”,
respemp:”370001”} …

]
}

If you need normalization & database-enforced constraints, JSON may not be best choice

{_id
dept

…
)

{_id
emp
dept ref

…
}

{_id
dept
emp ref

…
)

Requires
application-side
join which isn’t

very efficient for
field link

relationships like a
RDBMS

Nest all
employees in
DEPT object
creates data

redundancy and
increases

opportunity of out
of sync data

26 © 2014 IBM Corporation

JSON Use Case – Inheritance of Common Fields

� Example: Online Store
– Sells wide variety of products

� Documents share a common
structure but may have
unique variations

– This stores sells books and furniture
which will have different details

� Example:
– Website stores product

descriptions in single collection
– All have product number, price,

supplier, name, description
– Different product types have

unique fields
– As new products are introduced

they need no database
schema change

– Store both neatly in same collection

� Common fields are indexed, others
are queryable but not indexed

{prodnum:”CR2549”,
name:”Gulliver’s Travels”,
type:book,
price:15.97,
description:”Classic novel”,
supplier: “Penguin Group”

details : {author:”Jonathan Swift”,
categories:

[adventure,
travel,
fantasy]

publish_date: 1726
}

}

Products

{prodnum:”BA9444”,
name:”Mahogany Desk”,
type:furniture,
price:349.00,
description:”Small Writing Desk”,
supplier: “Elegant Wood Designs”

details : {construction:”veneer”,
weight:80,
units: pounds
dimensions:

{height:29,
width:48,
depth: 28,
units:”inches”

}
}

}

27 © 2014 IBM Corporation

DB2 JSON Support: Agility With a Trusted Foundation

� Interoperate seamlessly with modern applications
– Flexible schemas allow rapid delivery

of applications

� Preserve traditional DBMS capabilities,
leverage existing skills and tools
– Multi-statement Transactions
– Management / Operations
– Security
– Scale, performance and high availability
– Integrity

28 © 2014 IBM Corporation

DB2 JSON Java API

� Java Driver that translates API calls to SQL + function
invocations

� Supports Transactions

� Batches insertions

� Fire-forget inserts (fast)

� Indexing

� Time travel query

� Smart Query re-write

� Java command line

JSON API JSON
Command Shell

JDBC Driver

DB2 Engine
JSON_VAL()
- builtin, supports
extraction of (SQL)
values from BSON

DRDA

IoE w/ BLOB in the
expression

Java Apps

JSON_TABLE()
JSON_UPDATE()

JSON

UDFs

…

29 © 2014 IBM Corporation

NoSQL JSON Wire Listener

� Built on JSON API

� Leverage community

� Immediate reach to more
applications and developers

� Presence in "New style apps“

Community Provided Drivers

IBM extension to enable DB2 features

Applications
Java PHP NodeJS

JSON API JSON CLP

JDBC Driver

AIM Developed MongoDB Wire Protocol
NoSQL JSON Wire Listener

DB2 Engine

DB2JSON_TABLE()
JSON_UPDATE()

JSON

UDFs

…

BSON Wire
Protocol

DRDA

30 © 2014 IBM Corporation

JSON and DB2 – Complementary Technologies

� Does NoSQL mean NoDBA? NoDB2?
– Definitely not - the relational database isn’t going away anytime soon
– We see JSON as becoming a complementary technology to relational

� Transactional atomicity is essential for mission critical
business transactions
– DB2 JSON Store solution brings commits, transaction scope

© 2014 IBM Corporation

What’s the Biggest Thing in NoSQL Lately?

32 © 2014 IBM Corporation

IBM Delivering PaaS to Developers: Bluemix

33 © 2014 IBM Corporation

Cloudant Mobile Data

Analytics for
Hadoop

dashDB Geospatial
Analytics

DataWorks

IBM Cloud Data Services

� Broad portfolio of advanced database capabilities to manage and
analyze any data

� Quickly provision databases to compose applications

� Flexible hybrid deployment models available

SQL Database
Time Series

Database

34 © 2014 IBM Corporation

– It’s DB2!!!SQLDB: Database as a Service (Relational)

35 © 2014 IBM Corporation

dashDB: Data Warehouse as a Service

Netezza
Analytics

BLU
Acceleration

Cloud

3rd Party DW

Build More

Grow More

Know More

� Deploy in hours with rapid cloud
provisioning

� No infrastructure investment for
cloud agility

� In-Database analytics built in

� R Integration for predictive
modeling

� Partner Ecosystem for analytics

� IBM Watson Analytics ready

� Load and Go with no tuning
required

� Columnar optimized for analytic
workloads

� Memory optimized takes analytics
beyond in-memory

– It’s DB2!!!

36 © 2014 IBM Corporation

Native Hadoop Data Sources

CSV SEQ Parquet RC

AVRO ORC JSON Custom

Optimized SQL MPP Run-time

Big SQL

SQL based
Application

Big SQL
It’s DB2!

38 © 2014 IBM Corporation

The Push to SQL in NoSQL – It’s Your Expertise!

� Lots of initiatives: Impala, BigSQL, SQL-H, Stinger, HAWQ, +++

� All Looking to push SQL into Hadoop and Other NoSQL stores

Key-Value Ordered
Key-Value

Big Table Document Full
Text Search

Graph SQL

The Biggest Thing In NoSQL Today is SQL!

