
#IDUG#IDUG

Going Native: Leveraging DB2 for z/OS
SQL Procedures and UDFs

Robert Catterall
IBM

Session Code: E07
May 14, 2014, 10:30 - 11:30 AM | Platform: DB2 for z/OS

#IDUG

For starters, a prediction

 SQL Procedure Language (SQL PL) will come to be the dominant
language for development of DB2 for z/OS stored procedures
and user-defined functions (UDFs).

 You should know about SQL PL, and your organization should use it.

2

#IDUG

Agenda

 Where we’ve been, and where we’re going

 The case for native SQL procedures and UDFs – performance

 The case for native SQL procedures and UDFs – scalability and
security

 Native SQL procedure and UDF development and
management

 Managing the shift to SQL PL

#IDUG

Where we’ve been, and where we’re going

#IDUG

First: SQL Procedure Language
 Introduced with DB2 for z/OS Version 7

 Enabled coding of DB2 stored procedures using only SQL
• Made possible through the introduction of a new category of SQL

statements, called control statements (referring to logic flow control)

 Examples: IF, WHILE, ITERATE, LOOP, GOTO

CREATE PROCEDURE divide2

(IN numerator INTEGER, IN denominator INTEGER,

OUT divide_result INTEGER)

LANGUAGE SQL

BEGIN

DECLARE overflow CONDITION FOR SQLSTATE ’22003’;

DECLARE CONTINUE HANDLER FOR overflow

RESIGNAL SQLSTATE ’22375’;

IF denominator = 0 THEN

SIGNAL overflow;

ELSE

SET divide_result = numerator / denominator;

END IF;

END

From the
DB2 V8 SQL
Reference

#IDUG

DB2 V7 SQL procedures – the good, and the not so good

 Good:
• Expanded the pool of people who could develop DB2 for z/OS stored

procedures

 Not so good:
• As part of program preparation, SQL PL routine was converted into a C

language program with embedded SQL DML statements

 C language programs are generally not as CPU-efficient as programs
written in COBOL

 The CPU cost of the C language executable discouraged some
organizations from using SQL procedures

#IDUG

Big breakthrough: native SQL procedures

 Introduced with DB2 9 for z/OS in new-function mode (or DB2 10
NFM for organizations that migrated to DB2 10 from DB2 V8)

 Key differences (vs. original SQL procedures, which are now known
as external SQL procedures):
• No external-to-DB2 executable (no object module, no load module) – a

native SQL procedure’s package is that procedure’s one and only executable

• Executes in DBM1, the DB2 database services address space (as do all
packages) – not in a WLM-managed stored procedure address space

• Runs under caller’s task (versus a TCB in a stored procedure address space)

• Provides superior functionality (example: nested compound SQL statements
– great for multi-statement condition handlers)

• And, native SQL procedures – not external SQL procedures – are where you
will see advances in SQL PL functionality (more on this to come)

#IDUG

Another breakthrough: “native” SQL user-defined functions

 Officially called “compiled SQL scalar functions”

 Introduced with DB2 10 for z/OS in new-function mode

CREATE FUNCTION REVERSE(INSTR VARCHAR(4000))

RETURNS VARCHAR(4000)

DETERMINISTIC NO EXTERNAL ACTION CONTAINS SQL

BEGIN

DECLARE REVSTR, RESTSTR VARCHAR(4000) DEFAULT ’’;

DECLARE LEN INT;

IF INSTR IS NULL THEN

RETURN NULL;

END IF;

SET (RESTSTR, LEN) = (INSTR, LENGTH(INSTR));

WHILE LEN > 0 DO

SET (REVSTR, RESTSTR, LEN)

= (SUBSTR(RESTSTR, 1, 1) CONCAT REVSTR,

SUBSTR(RESTSTR, 2, LEN - 1),

LEN - 1);

END WHILE;

RETURN REVSTR;

END#

From the
DB2 10 SQL
Reference

#IDUG

“Native” (i.e., compiled) SQL UDFs – how they’re new

 They allow a SQL UDF, for the first time, to have a compound
statement in the RETURNS clause of CREATE FUNCTION
• Compound statement: a group of statements, generally set off by

BEGIN and END, that comprise a SQL routine (native SQL procedures
typically contain compound statements)

• What this means: you can write a UDF in SQL PL, and the associated
package is the UDF’s one and only executable (same as for a native SQL
procedure)

• Also like a native SQL procedure, a “native” UDF executes in the DB2
DBM1 address space, and executes under the invoker’s task

• Previously, having a UDF containing variable declarations and logic flow
control statements meant writing an external UDF in a language such
as COBOL

#IDUG

More new DB2 10 stuff pertaining to SQL UDFs

 Starting with DB2 10 NFM, there are three types of CREATE
FUNCTION statements for SQL UDFs (versus one with DB2 9)
• Compiled SQL scalar functions, aka non-inline SQL scalar functions (new

functionality – what I’ve called “native” SQL UDFs)

• Inlined SQL scalar functions

• SQL table functions (new functionality)

 The RETURN statement in a compiled SQL scalar UDF can contain
a scalar fullselect (previously, a SQL scalar UDF couldn’t even
reference a column)

 Via a SQL table UDF, you can return a set of rows to an invoker
• Table UDFs formerly had to be external

 What this all means: starting with DB2 10 NFM, you can code
high-function UDFs using only SQL

Don’t have their own
packages – incorporated
into package of invoker

Has its own package

#IDUG

DB2 10 new functionality for native SQL procedures

 XML data type valid for SQL procedure input and output
parameters, and for variables declared in a SQL procedure
(DB2 10)
• Also, XML data type can be passed to or received from, and/or be

used in a variable declaration in, a SQL UDF (scalar or table)

• Benefit: you no longer have to serialize an XML value into a character
string or a CLOB in order to work with it in a SQL procedure or UDF

Not applicable to external stored procedures – SQL or otherwise

#IDUG

DB2 11 new functionality for native SQL procedures (1)

 Array parameters can be passed to and/or received from, and
array variables can be declared in, native SQL procedures (and
the same is true for compiled SQL scalar UDFs)
• Call to SQL procedure with an array input or output parameter must

come from another SQL PL routine or from a Java program (via the IBM
Data Server Driver for JDBC and SQLJ type 4 driver)

• An array in this context is a form of a DB2 for z/OS user-defined data
type (i.e., a UDT) – you create it, then you use it

• Two array types: ordinary (elements are addressed by their ordinal
position in the array) and associative (elements ordered and
referenced by array index values)

 For simplicity’s sake, I’d recommend using ordinary arrays when you can

This is a big deal

CREATE TYPE PHONENUMBERS AS DECIMAL(10,0) ARRAY[50];

Max number of elements
in array (defaults to
about 2 billion)

Data type of values in the array

#IDUG

DB2 11 new functionality for native SQL procedures (2)

 A SQL procedure can function as an autonomous transaction
• How it’s done: AUTONOMOUS option specified in CREATE PROCEDURE (or

ALTER PROCEDURE) statement

 Specified instead of COMMIT ON RETURN YES/NO

• What it means:

 The autonomous SQL procedure commits on returning to the calling program,
but (unlike the case when COMMIT ON RETURN YES is in effect) that commit
does NOT affect the calling program’s unit of work

 The autonomous SQL procedure’s unit of work is independent of the calling
program’s unit of work – if the calling program’s unit of work is rolled back, data
changes made by the autonomous SQL procedure will not be rolled back

 An autonomous SQL procedure does not share locks with its caller, and could
conceivably get into a lock contention situation with its caller

 An autonomous SQL procedure can be cancelled by cancelling its caller

 One autonomous SQL procedure can’t call another autonomous SQL procedure

#IDUG

The case for native SQL procedures and UDFs
– performance

#IDUG

Native SQL procedures (and UDFs) and zIIP offload

 Some people think that native SQL procedures are zIIP eligible,
period – that is NOT the case

 A native SQL procedure is zIIP-eligible ONLY when it is called by a
DRDA requester (i.e., when the call comes through DDF)
• Why this is so: a native SQL procedure runs under the task of the calling

process, and if the caller is a DRDA requester its task is an enclave SRB in
the DDF address space, and that makes the SQL procedure zIIP-eligible

 An external DB2 stored procedure (SQL or otherwise) always runs
under a TCB in a WLM-managed stored procedure address space,
and for that reason it’s never zIIP-eligible, regardless of the caller

 So, when DRDA requesters call external DB2 stored procedures,
switching to native SQL procedures will boost zIIP utilization

#IDUG

Eliminating task switch delays

 When an external DB2 stored procedure is called (or an external UDF
invoked), the caller’s thread has to be switched from the caller’s task
to the stored procedure’s task

 Maybe not a big deal for a stored procedure, but an external UDF
could be driven many times in the execution of a single query, if (for
example) the UDF appeared in the SELECT of a correlated subquery
• In that case, all the thread switching from the application’s task to the external

UDFs task (and back) could really add up

• At one site (DB2 10 NFM), a given query drove over 100,000 invocations of an
external UDF in a single execution, and a query monitor showed a large
amount of “UDF TCB wait” time

• The external UDF was changed to a SQL UDF, and the query’s elapsed time
decreased substantially

#IDUG

DB2 10: better SQL PL performance

 The compiled form of a native SQL procedure executes with
improved CPU efficiency in a DB2 10 environment versus DB2 9
(when the SQL procedure is regenerated in the DB2 10 system)

 A couple of reasons why this is so:
• The path length for execution of IF statements (very common in SQL PL

routines) is reduced

• SET statements that reference built-in functions (e.g., the CHAR function)
are more CPU-efficient

 You can get additional CPU savings by leveraging the new (with
DB2 10 NFM) support for “chained” SET statements:

(a package)

SET x=1, y=2;SET x=1;

SET y=2;

#IDUG

A word about REGENERATE versus REBIND PACKAGE

 Referring to REBIND PACKAGE vs. ALTER PROCEDURE (or
FUNCTION) with the REGENERATE option for a SQL PL routine

 Key difference:
• REBIND PACKAGE affects only the non-control statements in a routine

(e.g., SQL DML statements like SELECT), while REGENERATE reworks a
package in its entirety

 So, if you want improved CPU efficiency for IF statements, and for SET
statements that reference built-in functions, you need to REGENERATE SQL PL
routines in a DB2 10 (or later) environment – REBIND PACKAGE won’t do it

 Additionally, if you want the bulk of the control statement section of a SQL PL
routine’s package to go above the 2 GB bar in DBM1 when the package is
allocated to a thread, you’ll need to REGENERATE the package

#IDUG

Another thing about REGENERATE vs. REBIND PACKAGE

 As is true for REBIND PACKAGE, REGENERATE can lead to access
path changes for SQL DML statements in a package
• However, APREUSE (reuse access paths when possible) is not an option

for REGENERATE

• Additionally, plan management (which enables reactivation of a previous
copy of a package via REBIND SWITCH) does not apply to REGENERATE

• So, use REBIND PACKAGE instead of REGENERATE if there’s not a need to
rework the control statement section of a SQL PL routine’s package

• If you do want to REGENERATE a SQL PL routine’s package, consider doing
a REBIND PACKAGE first

 After the REBIND PACKAGE, check to see if access paths changed
(APCOMPARE on REBIND can help here)

 If access paths didn’t change (or changed for the better), you should be safe
with a REGENERATE (access paths likely to stay the same if the REGENERATE
closely follows the REBIND PACKAGE)

#IDUG

Some other performance boosters not limited to SQL PL…

 These are things that can improve the CPU efficiency of DB2 stored
procedures in general – both native SQL and external
• RELEASE(DEALLOCATE) for packages associated with frequently executed SQL

PL routines (delivers CPU savings when paired with persistent threads)

 DB2 10 provided way more virtual storage “head room” for use of
RELEASE(DEALLOCATE) by shifting thread-related virtual storage above the 2 GB
bar in DBM1 (for packages bound or rebound in DB2 10 system)

 Also new with DB2 10: RELEASE(DEALLOCATE) is respected for packages executed
via DBATs (i.e., DDF threads) – these threads become high-performance DBATs

 DB2 11 provides relief for BIND/REBIND, DDL, and utility concurrency issues
related to RELEASE(DEALLOCATE) + persistent threads (DB2 10 provides -MODIFY
DDF command to temporarily “turn off” high-performance DBAT functionality)

• New (with DB2 10 NFM) RETURN TO CLIENT option for DECLARE CURSOR

 Especially for larger result sets, much more CPU-efficient way to make result set
rows available to a “top-level” calling program from a nested stored procedure, as
compared to temporary table approach

#IDUG

…and other performance benefits of stored procs in general

 From a performance perspective, the “sweet spot” for stored
procedure usage is for a DB2 client-server (i.e., DDF) workload

 Stored procedures provide a means of packaging static SQL in a
form that can be dynamically invoked

 Stored procedures also help to loosen coupling between client-side
programs and database design
• Suppose you make a performance-improving logical database design change

(i.e., one that would normally be visible to data-accessing applications)

• If affected data is accessed via stored procedures, likely that client-side code
changes will not be required – just change stored procedures as needed

For optimal CPU efficiency

Client-side developers may want to call
stored procedures via JDBC or ODBC

#IDUG

The case for native SQL procedures and UDFs
– scalability and security

#IDUG

About this section of the presentation…

 As I see it, the scalability and security advantages of DB2 stored
procedures pertain to stored procedures in general – external as
well as native SQL

 That being the case, the particular advantages of native SQL
procedures (and UDFs) versus external stored procedures in this
area can be described as follows:
• Native SQL procedures provide the security and scalability advantages that

pertain to DB2 stored procedures in general, with these added advantages:

 They can be developed by SQL-knowledgeable people who aren’t COBOL or
Java programmers

 They provide server-side CPU cost savings for DB2 client-server (DDF)
applications, thanks to significant zIIP offload

#IDUG

Scalability: reduced network “chattiness” for DDF trans

 For a DDF transaction that involves issuance of 10 (for example)
SQL DML statements, packaging those statements in a stored
procedure replaces 10 network request/response pairs with 1

DB2

DML
DML
DML
DML
DML
DML
DML
DML
DML
DML

DML
DML
DML
DML
DML
DML
DML
DML
DML
DML

Stored procedure
CALL MYPROC

#IDUG

Scalability: the DB2 MQListener

 If some of your transactional work can drive asynchronous versus
synchronous DB2 processing, peak workloads can be spread out,
time-wise, helping to smooth out server utilization profiles
• Data provided by a transaction could be placed on a WebSphere MQ queue,

at which point the transaction, from the client perspective, is done

• The DB2 MQListener ships with DB2 for z/OS, and enables you to associate an
MQ queue with a DB2 stored procedure

 When a message arrives on the queue, the associated stored procedure will be
automatically invoked and the message will be passed as input to the procedure

 You could set this up for several queues that would be for different message
types, and each queue could be associated with a particular stored procedure

• With this approach, a transaction surge could show up as an increase in a
queue’s message depth, versus an increase in server utilization

• Added bonus: a less-brittle application infrastructure (if the database is
unavailable, messages build up on queues, versus transactions failing)

#IDUG

Security: static SQL

 As noted previously, stored procedures provide a means of
packaging static SQL in a form that can be dynamically invoked

 In some cases, the contribution of static SQL toward more-robust
security is more attractive even than the performance advantage
• When SQL DML statements are static and issued by way of a stored

procedure, the invoking application’s authorization ID does not require table
access privileges (SELECT, INSERT, UPDATE, DELETE)

 Instead, the application’s ID requires only the EXECUTE privilege on the stored
procedure

 Even tighter security: create a DB2 role, grant execute on the stored procedure
to the role, and create a trusted context that restricts use of the role’s privileges
to a particular application ID connecting from a particular IP address

#IDUG

Security: database schema abstraction

 If someone wants to hack into your database, he’ll have an
easier time of it if he knows names of tables and columns

 When “table-touching” SQL statements are packaged in stored
procedures, stored procedure developers require knowledge
of database details but coders of calling programs do not
• Data security is boosted by limiting the number of people with

detailed knowledge of the database schema

#IDUG

Native SQL procedure and UDF development
and management

#IDUG

IBM Data Studio

 A great tool for developing and debugging SQL PL routines
• Free, and downloadable – current release is Version 4.1

• (http://www-03.ibm.com/software/products/en/data-studio/)

• Eclipse-based, GUI client that runs under Windows or Linux

• Among other things, the Data Studio Debug view enables you to:

 Set breakpoints (on both a line and variable basis)

 Step into or over a line of code

 Inspect variables, and change variable values

• Also, beats the tar out of SPUFI when it comes to testing individual SQL
statements, especially in these categories:

 XML data access (even formats it for you on retrieval)

 LOB data access

 Stored procedure calls

#IDUG

What about SQL PL source code management?

 A lot of the popular vendor-supplied tools used for source code
management (SCM) don’t yet offer support for SQL PL

 Probably, more SCM tool vendors will offer SQL PL support as use
of the language grows, but what are folks doing in the meantime?

 One SCM option for SQL PL: “roll-your-own”
• This approach can be aided by the use of some sample REXX routines

provided via the fix for APAR PM29226 (DB2 9 and 10 for z/OS)

• DB2 sample job DSNTEJ67 illustrates use of these routines, which include:

 A service that extracts the source for a SQL PL routine from the DB2 catalog
and places it in a file (or into a string)

 A service that invokes the SQL PL precompiler to generate a listing of a routine

 A service that can be used to change various elements of the SQL PL source for
a routine, such as schema, version ID, and CREATE PROCEDURE options

 A service that can be used to deploy SQL PL source code

#IDUG

Another SCM option for SQL PL

 Use the open-source Apache Subversion software versioning
and revision control system, in conjunction with Data Studio
(http://subversion.apache.org/)

 Data Studio is built on Eclipse, and Subversion (also known as
SVN) integrates with Eclipse
• SQL PL routines developed using Data Studio are Eclipse resources

• These resources can be managed by an Eclipse “Team” component
plug-in such as Subversion

 Subversion can be installed into Data Studio

#IDUG

Some native SQL procedure deployment considerations

 With the procedure’s package being the only executable,
deployment is different versus external procedures

 To get a native SQL procedure from a test system into production,
you can use BIND PACKAGE with the DEPLOY option
• The non-control section of the procedure’s package will be reoptimized on

the production system, but the control section will not be changed

 If a previous version of the SQL procedure is already running in
production, you can control when the new version becomes active
with the ACTIVATE VERSION option of ALTER PROCEDURE
• Selective use of the new version before then can be enabled via the

CURRENT ROUTINE VERSION special register

 Get comfortable with these deployment mechanisms before going
big into native SQL procedures and non-inline SQL scalar UDFs

#IDUG

ALTER versus DROP/re-CREATE for native SQL procedures

 Sometimes – especially when an organization is just getting into
native SQL procedures – DBAs will go with DROP and re-CREATE
versus ALTER PROCEDURE to make changes to a procedure

 That approach can be problematic when you get into nested
procedure calls (i.e., one stored procedure calls another)
• If PROC_A calls PROC_B, and PROC_A is a native SQL procedure, an

attempt to drop PROC_B will fail

 You can check to see if any native SQL procedures are dependent on a given
stored procedure by querying the SYSPACKDEP catalog table (DTYPE = ‘N’)

• You could try dropping PROC_A, then dropping PROC_B, then changing
PROC_B via re-create, then re-create PROC_A, but what if PROC_A is
called by a native SQL procedure?

• Bottom line: if you can accomplish a needed change with ALTER
PROCEDURE, do that versus DROP and re-CREATE

#IDUG

Managing the shift to SQL PL

#IDUG

First, about your existing external stored procedures…

 Some organizations have hundreds, even thousands, of DB2 for
z/OS stored procedures written in COBOL
• It would probably be counter productive to try to change these to native SQL

procedures en masse

• On top of that, some of those COBOL stored procedures might access non-
DB2 data (VSAM data, for example)

• Low-hanging fruit for replacement with native SQL procedures: COBOL
procedures that are relatively simple, access DB2 data, are frequently
executed, and are primarily called by DRDA requesters (want zIIP offload)

 As for external SQL procedures, converting those to native SQL
procedures is sometimes pretty straightforward, other times less so
• Lots of very useful information in this brief IBM “technote” (just a few pages):

• http://www-01.ibm.com/support/docview.wss?uid=swg21297948

#IDUG

Question: who writes SQL PL routines?

 One might think DB2 DBAs, but you could have a bandwidth
problem with that approach
• DB2 for z/OS DBA teams are often pretty lean and mean, and they’re

usually pretty busy managing the database system

 Organizations typically have many more application developers
than DB2 DBAs
• But SQL PL, and all kinds of aspects of the CREATE and ALTER PROCEDURE

(and FUNCTION) statements, may be unfamiliar to these folks

 There’s a third way…

#IDUG

One organization’s approach

 Created a new position, “procedural DBA”
• DB2 database-centric, but with an emphasis on developing and

managing stored procedures (and functions)

• Advertised the openings internally, and got a mix of applicants

 Some who’d been traditional DB2 DBAs and wanted more of an
application focus

 Some who’d been traditional application programmers and wanted a
more data-oriented role

 All seemed pretty pumped about a new career challenge

 Something to keep in mind: SQL PL is virtually identical in DB2
for z/OS and DB2 for LUW systems
• So, people writing SQL procedures and UDFs could create routines for

both platforms

#IDUG#IDUG

Please fill out your
session evaluation before

leaving!

Robert Catterall
IBM
rfcatter@us.ibm.com

Session E07
Going Native: Leveraging DB2 for z/OS SQL
Procedures and UDFs

