
#IDUG#IDUG

At Your Service: Optimizing DB2 for z/OS
for Client-Server Applications

Robert Catterall
IBM

Session Code: G01
May 13, 2014 (12:45 PM - 01:45 PM) | Platform: DB2 for z/OS

#IDUG

Agenda

 The current DB2 for z/OS client-server landscape

 Optimizing DB2 for z/OS for client-server performance

 Optimizing DB2 for z/OS for client-server scalability

 Optimizing DB2 for z/OS for client-server availability

 Optimizing DB2 for z/OS for client-server security

#IDUG

The current DB2 for z/OS
client-server landscape

#IDUG

What I mean by “DB2 for z/OS client-server application”

 I mean an application that accesses DB2 for z/OS-managed data by
way of the DB2 distributed data facility (DDF)
• There are, of course, other client-server configurations that involve DB2 for

z/OS and don’t involve DDF – for example:

 Client invokes a CICS transaction through the CICS Transaction Gateway, and
CICS transaction program accesses DB2 data

 Client places a message on a WebSphere MQ queue, and a server-side process
(maybe a CICS transaction, maybe a DB2 stored procedure) gets that message
and interacts with the DB2 database accordingly

 Client programs run in WebSphere Application Server for z/OS, and access data
in a “local” DB2 subsystem, using the type 2 JDBC driver and the RRS attach

• These other DB2-related client-server configurations are outside the scope
of this presentation

#IDUG

Big, and getting bigger

 My observation: client-server computing (the DDF kind) is far and
away the number one driver of DB2 for z/OS workload growth
• DB2 accounting trace data can be aggregated by connection type, and at

many sites the DRDA connection type (the DDF workload) already accounts
for the largest share of class 2 CPU time (SQL statement execution)

 More than call attach, TSO attach, CICS, RRS attach, etc.

• For some DB2 subsystems, over 90% of the total SQL workload is driven by
DRDA requesters

• Plenty of organizations have a DDF transaction rate that is in the hundreds
per second for a single DB2 subsystem, or over 1000 per second on a DB2
data sharing group

#IDUG

If client-server is driving mainframe DB2 growth…

 …what’s driving client-server growth?

 There are multiple contributors:
• Packaged applications (e.g., ERP, HR, and financial management apps)

• Analytics applications (e.g., COGNOS, SPSS, BusinessObjects)

• In-house-written applications

 For these applications, DB2 for z/OS is an attractive data
server because:
• It houses a lot of “source” data (often referred to as “data of record”)

• That data can be accessed via standard, non-DBMS-specific interfaces
(two popular examples being JDBC and ODBC)

#IDUG

The importance of standards

 “Modern” application developers are fine with writing DB2 for
z/OS-accessing programs, as long as this doesn’t require them to
do things differently versus coding for other DBMSs

 Similarly, application vendors are willing to support DB2 for z/OS
as a data server if this doesn’t require a lot of change versus
other data servers

 What that means for mainframe DB2 people: if you want to grow
the DB2 for z/OS workload at your site, put out the welcome mat
for application developers (and application vendors)

#IDUG

Seeing things from a developer’s perspective

 Scenario: an application written by your organization’s
developers has pretty severe lock contention problems with the
standard DB2 for z/OS page-level locking in effect
• You could switch to row-level locking (the standard for other DBMSs,

including DB2 for LUW), or you could insist that the developers change
their code to work well with page-level locking

• If you do the former, have you “sold out?”

 NO! Row-level locking is a feature of DB2 for z/OS, and it’s a good thing that
the application in question is running with DB2 on the mainframe

 The key, then, is to optimize DB2 for z/OS (for performance and
in other ways) without making DB2 for z/OS an uninviting data-
serving platform for client-server applications
• That’s what the rest of this presentation is about

#IDUG

Optimizing DB2 for z/OS for
client-server performance

#IDUG

Use high-performance DBATs

 Introduced with DB2 10 for z/OS (in conversion mode)

 How they’re activated: a DBAT used to execute a package bound
with RELEASE(DEALLOCATE) becomes a high-performance DBAT
• The DBAT will stay dedicated to the connection through which it was

instantiated and can be reused by 200 transactions (then it will be
terminated to free up resources allocated to the thread)

 The benefit: high-performance DBATs enable you to get for DB2
client-server transactional workloads the CPU-efficiency benefits
of RELEASE(DEALLOCATE) packages + persistent threads
• Conceptually similar to executing RELEASE(DEALLOCATE) packages with

CICS-DB2 protected entry threads

• For simple transactions, could reduce in-DB2 CPU time by 10% or more

#IDUG

More on high-performance DBATs

 One way to activate high-performance DBATs: bind the IBM Data
Server Driver packages (or the DB2 Connect packages) with
RELEASE(DEALLOCATE)
• If you do that, consider binding these packages into the standard NULLID

collection with RELEASE(COMMIT), and into another collection with
RELEASE(DEALLOCATE)

 Then, by way of a client-side data source property, point applications to one
collection or the other – this allows you to use high-performance DBATs in a
more granular fashion, versus for all your client-server applications

 Another way to activate high-performance DBATs: bind packages
of DB2 stored procedures called by DRDA requesters with
RELEASE(DEALLOCATE)

#IDUG

Use native SQL procedures

 These can boost performance in two ways
• They provide a means of dynamically invoking static SQL

 Meaning: a native SQL procedure (like an external stored procedure) can be
invoked by way of (for example) a JDBC or ODBC call, and a lot of client-side
developers like to use JDBC and/or ODBC

 Static SQL generally delivers optimum performance (though CPU savings
versus client-issued dynamic SQL DML statements may be insignificant for
very simple transactions involving only two or three SQL statements)

• If you’re already using external stored procedures for DB2 client-server
applications, shifting to native SQL procedures can reduce System z
general-purpose CPU utilization by substantially increasing zIIP offload

 Bonus: with DB2 11 (NFM), native SQL procedures support:
• Array-type input and output parameters (when called from a Java client

using type 4 JDBC driver, or by another SQL PL routine)

• Autonomous transactions (independent of caller’s unit of work)

#IDUG

Use “native” SQL user-defined functions, too

 Introduced with DB2 10 in new-function mode

 “Native SQL UDFs” is my term – officially these are called compiled
SQL scalar functions (or sometimes non-inline SQL scalar functions)
in the DB2 documentation

 Written in SQL PL, like native SQL procedures

 Also like native SQL procedures, these UDFs run under the task of
the invoking application process
• If that process is a DDF-connected application, the z/OS task is a

preemptable SRB in the DDF address space, and that makes the “native”
SQL UDF zIIP-eligible

• Also: if a “native” SQL UDF appears in, say, a correlated subquery, it could
be invoked LOTS of times in the execution of one query, and that magnifies
the benefit of the “native” SQL UDF running under the invoker’s task

#IDUG

Go big on System z memory – DB2 buffer pools

 An organization conducted a performance test of an application,
with DB2 for z/OS versus DB2 for LUW as the data server

 Initial tests showed that throughput with DB2 for z/OS was only
30% of that seen with DB2 for LUW
• We saw that 90% of in-DB2 time (on z/OS) was wait-for-read-I/O time

 Turned out that the DB2 for LUW server had 96 GB of memory for
buffer pools, versus 2 GB for DB2 for z/OS
• In that light, DB2 for z/OS performance was remarkably good

 The message: distributed systems data servers often have loads
of memory – your System z server can (and should), too, and a
great use of Big Memory is big DB2 for z/OS buffer pools
• Mainframe memory: way less expensive than it used to be, doesn’t affect

software costs, reduces CPU utilization, and boosts throughput

#IDUG

Leverage dynamic statement caching

 Unless you’ve packaged “table-touching” SQL in DB2 stored
procedures, likely that most all of your client-server application
SQL will be dynamic, due to use of JDBC and/or ODBC
• Yes, SQLJ (embedded, static SQL in Java programs) is an option, but in my

experience JDBC is much more widely used than SQLJ

 That being the case, caching of prepared dynamic SQL statements
is very important for DB2 client-server application performance
• No new news there – my message to you is:

 If your z/OS LPAR has a lot of memory (and I hope it does – see previous slide)
then use it to have a statement cache that’s big enough to deliver a high hit
ratio (I regularly see hit ratios north of 90%, and I’d tell you to shoot for that)

#IDUG

Let DB2, if needs be, parameterize dynamic SQL for you

 A lot of client-side developers (and application vendors) know
that parameterizing dynamic SQL statements is key to maximizing
the performance benefit of dynamic statement caching
• Referring to use of the ? parameter marker vs. literal values in predicates

 That said, sometimes you have to deal with unparameterized SQL
statements
• In such cases, take advantage of the CONCENTRATE STATEMENTS WITH

LITERALS functionality introduced with DB2 10 for z/OS

 Can be specified as an attribute of a PREPARE statement, or in a client-side
data source or connection property (for JDBC or ODBC access to DB2)

 When used, DB2 checks global statement cache for an incoming statement
containing a literal value, and if there’s no hit then literal value is replaced by
& and DB2 checks again (and prepares and caches statement if again no hit)

 Remember, sometimes you WANT optimizer to see literal values in predicates

#IDUG

Get your DDF-related dispatching priorities right
 Assign DDF itself to a high-priority service class

• Give it the same priority as DBM1, MSTR, and your stored procedure address
spaces (IRLM should be in the higher-priority SYSSTC service class)

• Only the DDF “system” tasks will have this high priority, and they typically
account for a very small percentage of total DDF workload CPU consumption

 Though these tasks tend to use only a small amount of CPU capacity, they must
be dispatched readily when they have work to do, or DDF throughput will suffer

 Assign DDF-using applications to service classes as appropriate – if
you don’t, they will get “discretionary” priority by default
• There are a dozen or so identifiers that you can use to map particular DDF-

using applications to service classes

 Examples: DB2 auth ID, collection name, client-provided accounting information

• A really good write-up on WLM policy set-up for a DDF workload: section
3.3.2 of IBM “redbook” titled DB2 9 for z/OS: Distributed Functions

 http://www.redbooks.ibm.com/abstracts/sg246952.html?Open

#IDUG

Don’t over-utilize zIIP engines

 As z/OS people, we’re accustomed to driving general-purpose
engines to very high levels of utilization (90% or more) while still
getting excellent throughput and response times

 DO NOT run zIIP engines at such high levels of utilization
• The problem: if zIIP engines are too busy, zIIP-eligible work can run on

general-purpose CPs, but that can introduce processing delays

• In a DB2 10 (or 11) environment, these delays can negatively impact
prefetch performance, because asynchronous read-related processing
became zIIP-eligible starting with DB2 10

 Degraded prefetch performance can slow prefetch-intensive applications (e.g.,
batch, business intelligence), with slowdown showing up as an increase in DB2
monitor-reported “wait for other read” time (accounting class 3)

 I’ve seen zIIP-eligible workloads perform well with zIIPs running at
60% or even 70%, but I wouldn’t want to go over that level

#IDUG

Optimizing DB2 for z/OS for
client-server scalability

#IDUG

Have plenty of connections

 CONDBAT in ZPARM (also known as MAX REMOTE CONNECTED)
• Value can be up to 150,000

• What’s important: CONDBAT > MAXDBAT, and CMTSTAT = INACTIVE, so
that connections can go inactive when DDF transactions complete, and
DBATs can be disassociated from connections (and therefore pooled)

 Referring here to “regular” DBATs – high-performance DBATs remain associated
with their instantiating connections

• You probably want CONDBAT value to be at least twice the MAXDBAT value
(relatively small % of connections likely to be active at one time)

• How you can tell if your CONDBAT value is too small (reaching limit causes
subsequent connection requests to be rejected):

 Check a DB2 monitor-generated statistics long report (or online monitor
display), and find the DDF ACTIVITY section

 Look for the field with a label like CONN REJECTED-MAX CONNECTED – if the
value is non-zero, you should probably increase your CONDBAT value

#IDUG

Have plenty of DBATs

 MAXDBAT in ZPARM (also known as MAX REMOTE ACTIVE)
• Starting with DB2 10, can be set as high as 19,999 (though practical limit

is probably below that number)

 I’d probably aim to see that MAXDBAT + CTHREAD does not exceed 10,000

 This assumes that packages have been rebound (perhaps via ALTER
PROCEDURE with REGENERATE for native SQL procedures and UDFs) – in that
case almost all thread-related storage will be above the 2 GB bar in DBM1

 Remember, if you increase your MAXDBAT value, increase CONDBAT, too

• If you want to use high-performance DBATs, may want to substantially
increase your MAXDBAT value first (like maybe double it)

 A high-performance DBAT, once instantiated, does not go back into the DBAT
pool; thus, more high-performance DBATs means fewer DBATs in the pool if
you don’t increase MAXDBAT, and you want a fair number of pooled DBATs

 In DB2 monitor-generated statistics long report, compare a field with a label
like HWM ACTIVE DBATS-BND DEALLC to your MAXDBAT value (if former gets
anywhere near latter, boost MAXDBAT value)

#IDUG

Have plenty of zIIP MIPs

 This is a performance thing (as previously mentioned), but it’s also
a scalability thing

 At one time, you could only get one zIIP engine for every general-
purpose engine on a System z server – now you can get two
• On zEC12 or zBC12, since July 23, 2013

 The more heavily weighted your workload is towards DB2 client-
server (in a DDF context), the more zIIP vs. GCP capacity you want

 Remember, it’s not just DDF-related activity driving zIIP utilization,
and “other use” is increasing
• DB2 10: RUNSTATS, prefetch reads, database writes, XML schema validation

• DB2 11: log I/Os, pseudo-deleted IX entry clean-up, more utility processing

• And, I’m seeing more WebSphere on z/OS – think zAAP-on-zIIP

• Ensure that zIIP capacity stays ahead of zIIP demand

#IDUG

Use type 4 JDBC/ODBC drivers

 Straight from application server to DB2 – not through a gateway
• Simpler, more robust, more scalable infrastructure (fewer “moving parts”)

• Better performance (eliminates “hop” to DB2 Connect gateway)

 Another recommendation: use IBM Data Server Driver vs. DB2
Connect (if you’re licensed for latter you can use former)
• Lighter-weight client

• Easier upgrade to new maintenance levels and new releases

• Not just JDBC, ODBC: also SQLJ, .NET, CLI, OLE DB, PHP, Ruby, Python, Perl

 WAS for z/OS to local DB2: use type 2 or type 4 JDBC driver?
• Type 2 provides more CPU-efficient access to DB2 (good for Java

transactions that issue a good number of quick-running SQL statements)

• Type 4 delivers more zIIP utilization for SQL statement execution (good for
longer-running SQL statements, and for native SQL procedures)

#IDUG

Leverage DB2 data sharing technology

 Scalability on steroids

 Up to 19,999 DBATs and 150,000 connections per member of a
DB2 data sharing group

DB2 DB2

DB2 DB2

#IDUG

Optimizing DB2 for z/OS for
client-server availability

#IDUG

Beyond the availability basics (1)

 “The basics” are the “motherhood and apple pie” things like:
• Partition your larger tables

• Regularly back up your data

• Use online REORG

• Yada yada yada

 Beyond these basic practices, there are other actions that can
boost DB2 data availability (for all apps, not just client-server):
• Convert non-universal table spaces to universal (for single-table table

spaces, this can be done – starting with DB2 10 NFM – via ALTER and
online REORG)

• The availability angle: provides support for pending DDL (new with DB2 10
NFM), whereby many database design changes can be accomplished non-
disruptively via ALTER + online REORG (e.g., page size, SEGSIZE, DSSIZE)

 New DB2 11 pending DDL: ALTER TABLE with DROP COLUMN

#IDUG

Beyond the availability basics (2)

 Image copy indexes on large tables
• Do-able since DB2 V6, but not being done at a lot of sites

• The availability angle: for a large table, there’s a good chance that
RECOVER of an index will be faster than REBUILD of that same index

 Not only that, but if you lose a table space AND its indexes, you can recover
indexes WHILE table space is being recovered if the indexes were COPY’ed

 Leverage FlashCopy support for the COPY utility (and for inline
copies generated by other utilities)
• At some sites, there is a requirement to run SHRLEVEL REFERENCE image

copies of some large objects prior to the start of a batch update process

 Run COPY with FLASHCOPY YES, and the read-only period will be much briefer

• Another plus: can create a time-consistent (i.e., “non-fuzzy”) image copy,
even when SHRLEVEL CHANGE is specified

#IDUG

Use queues to make applications less “brittle”

 Problem: if transaction-driven data updates are made synchronously
(from end-user’s perspective), whole process breaks down if target
database objects are temporarily unavailable for update

 Solution: put a queue between client and server parts of the process
• User hits “Submit” to place an order (for example), input data is placed on a

recoverable queue, and user gets a “Thanks for your order” message

• A back-end process takes message off queue and accomplishes the back-end
DB2 data updates as needed

 With WebSphere MQ, that back-end process could be a DB2 stored procedure
invoked automatically by the DB2 MQListener

• If target table(s) is unavailable for update, update transactions continue to
complete successfully (from end-user’s point of view)

 Queue depth builds up until target table is again available for update, is worked
back down when table update availability is restored

#IDUG

Of course, DB2 data sharing is great for high availability

 Drastically reduces the scope of a DB2 subsystem failure
• If one DB2 member in the group fails, only data rows or pages that the

failing member had X-locked at the time of the failure will be
unavailable

 Those retained locks will be freed when failed member is restarted

 Restart is typically initiated automatically (on another z/OS LPAR in the
Parallel Sysplex, if necessary) and will likely complete faster than would be
the case in a standalone DB2 environment

 Virtually eliminates the need for planned DB2 outages
• Example: apply DB2 maintenance without ever stopping the

application workload

#IDUG

More DB2 data sharing: DVIPAs and DDVIPAs

 Define a dynamic virtual IP address (DVIPA) for each member of
the DB2 data sharing group
• If a member fails and is restarted on another z/OS LPAR in the Parallel

Sysplex, requesters utilizing DRDA 2-phase commit protocol will be able to
find it (important for resolving in-doubt DBATs to free up retained locks)

 Define a distributed DVIPA (DDVIPA) for the Sysplex Distributor (a
z/OS component), make that the data sharing group’s IP address
• That way, an initial client request to connect to the data sharing group will

succeed, as long as at least one DB2 member is active

 Specify IP address for each DB2 member (and group’s IP address)
in the member’s BSDS, not in a PORT reservation statement
• Allows a DB2 member to accept a request to its port on any IP address

• Additionally, required for DRDA SSL support (more on this to come)

#IDUG

Data sharing and “granular” high availability

 Scenario: you have a DB2 data sharing group, and you want to
restrict a particular application to a subset of the group’s members
• Example: separate SQL execution for BI and OLTP applications

 Solution: define two location aliases (DB2 V8 feature) by updating
members’ BSDS data sets (do-able via command with DB2 10)
• One alias could map to members 1 and 2 of a 6-way group (for example), and

the other could map to members 3, 4, 5, and 6

• Have the BI application connect to the 2-member alias, and the OLTP
application to the 4-member alias

 The payoff:
• Workload separation achieved, and both applications get high-availability

benefits of multi-member DB2 service (failure protection, maintenance
without maintenance window, connection success if any alias member is up)

#IDUG

Optimizing DB2 for z/OS for
client-server security

#IDUG

Tighter client-server security with roles and trusted contexts

 Scenario: application issues dynamic SQL DML statements (maybe
using JDBC or ODBC interface), so application’s DB2 authorization
ID needs table access privileges (e.g., SELECT, UPDATE, DELETE)
• Problem: it’s likely that a number of people know the application’s DB2

auth ID and password – could someone use those credentials to gain
access to data outside the application?

• Solution: grant the privileges needed for successful execution of the
application’s dynamic SQL statements to a role, not to the application’s ID

 Then create a trusted context that limits use of the role’s privileges to an
application that connects to DB2 using a particular authorization ID and runs
on a particular application sever or servers (identified by IP address)

#IDUG

Encryption in transmission: SSL

 Use the DSNJU003 utility to add a secure port to the communication
record of a DB2 subsystem in the BSDS (or use the -MODIFY DDF
command if on DB2 10 or 11 and change applies to a location alias)
DDF LOCATION=XYZ,SECPORT=448

 A request directed to this port will have to use SSL encryption, or
the request will be rejected

 You’ll want to work with your z/OS TCP/IP and security people to get
this set up (there are AT-TLS and certificate considerations)
• A good write-up can be found in the DB2 for z/OS Managing Security manual

(section of interest: “Encrypting your data with Secure Socket Layer support”)

 A DB2 trusted context can require the use of SSL encryption (specify
ENCRYPTION 'HIGH' in ATTRIBUTES part of trusted context)

#IDUG

Stored procedures: more-robust security via static SQL

 A lot of client-side developers like to use data access interfaces
(e.g., JDBC, ODBC) that mean dynamic SQL on the DB2 server

 As previously noted, successful execution of dynamic SQL DML
statements requires granting table access privileges to an
application process’s DB2 authorization ID

 An alternative: package “table-touching” SQL statements in DB2
stored procedures (I like native SQL procedures) – application IDs
then only need EXECUTE privilege on called stored procedures
• Stored procedures provide a means of dynamically invoking static SQL

 Client-side programmers like using their preferred data access interface

 Server-side security people like the enhanced security provided by static SQL
(and they like that stored procedures reduce need to expose detailed
database schema information – something that table UDFs do, too)

#IDUG

Restricting access to certain rows and columns of a table

 Row permissions and column masks, introduced with DB2 10,
can be a better choice versus “security views” for granular and
selective restriction of data access
• Row permissions are preferable to security views in a general sense

 A key advantage: users (and programmers) continue to refer to the base
table by name – no need to refer to a view name

• Column masks also have the “no need for a view name” advantage,
but in some situations, security views could be preferable:

 When access to a lot of a table’s columns is to be restricted (a single view
can of course leave a lot of columns out of the SELECT list, whereas one
mask restricts access to data in only one column)

 When columns are to be “hidden,” versus merely masked (with view, a
“left out” column appears to be “not there,” whereas as masked column
would appear in a query’s result set, but with masked data values)

#IDUG

And finally, enterprise identity mapping

 Consider this situation:
• End users have IDs that they use to authenticate to your network and to

client-server applications

 What if RACF IDs are different from users’ “network” user IDs, and you don’t
want users to have to deal with both?

 What if you don’t want to define a RACF user ID for every single end user that
accesses DB2 via client-server applications? What if you’d like to map a set of
end users to a single RACF ID?

 Enterprise identity mapping addresses these concerns
• Possible with DB2 9, but became a lot easier to implement with DB2 10

• Leverages a RACF capability called distributed identity filters – one of these
can associate a RACF user ID with one or more end-user “network” IDs

 The “or more” association is done via a wild-card character in the “name” part
of the USERDIDFILTER portion of the RACF RACMAP command that defines the
filter – you can map all end-user IDs defined in a given registry to one RACF ID

#IDUG

A little more on enterprise identity mapping

 Besides the RACF piece, there are DB2 and application pieces of
the enterprise identity mapping whole

 The DB2 piece:
• Enterprise identity mapping works for DB2 only in the context of a trusted

connection

 So, you grant DB2 privileges needed by a client-server application to a DB2
role, and you specify the RACF ID to which one or more distributed identities
map in the WITH USE FOR part of the CREATE TRUSTED CONTEXT statement

 The application piece:
• The application 1) gets a trusted connection to DB2, and 2) requests an

authorization ID switch for that connection (so the application will pass to
DB2 the distributed user identity and the name of the associated registry)

 WebSphere Application Server can do this for you, and it can also be
accomplished by way of APIs for Java, CLI/ODBC, and NET

#IDUG#IDUG

Please fill out your
session evaluation before

leaving!

Robert Catterall
IBM
rfcatter@us.ibm.com

Session G01
At Your Service: Optimizing DB2 for z/OS for
Client-Server Applications

