
DB2 11 for z/OS Transparent Archiving
(aka as database versioning)

Triangle DB2 User’s Group Meeting
December 4, 2014

Stan Goodwin

Technical Sales Specialist

DB2 Advisor for z/OS

IBM Mid-Atlantic Region

segoodw@us.ibm.com

Information contained in this material has not been submitted to any formal IBM review and is

distributed on "as is" basis without any warranty either expressed or implied. Measurements data

have been obtained in laboratory environment. Information in this presentation about IBM's

future plans reflect current thinking and is subject to change at IBM's business discretion. You

should not rely on such information to make business plans. The use of this information is a

customer responsibility.

IBM MAY HAVE PATENTS OR PENDING PATENT APPLICATIONS COVERING SUBJECT

MATTER IN THIS DOCUMENT. THE FURNISHING OF THIS DOCUMENT DOES NOT IMPLY

GIVING LICENSE TO THESE PATENTS.

TRADEMARKS: THE FOLLOWING TERMS ARE TRADEMARKS OR ® REGISTERED

TRADEMARKS OF THE IBM CORPORATION IN THE UNITED STATES AND/OR OTHER

COUNTRIES: AIX, DATABASE 2, DB2, Enterprise Storage Server, FICON, FlashCopy, Netfinity,

RISC, RISC SYSTEM/6000, System i, System p, System x, System z, IBM, Lotus, NOTES,

WebSphere, z/Architecture, z/OS, zSeries

The FOLLOWING TERMS ARE TRADEMARKS OR REGISTERED TRADEMARKS OF THE

MICROSOFT CORPORATION IN THE UNITED STATES AND/OR OTHER COUNTRIES:

MICROSOFT, WINDOWS, WINDOWS NT, ODBC, WINDOWS 95

For additional information see ibm.com/legal/copytrade.phtml

Disclaimer and Trademarks

Agenda

 DB2 10 Temporal Tables – review and what’s new

 New Temporal Special Registers for v11

 Temporal predicates in DB2 views

 DB2 11 Transparent Archiving

 What is it?

 Archive management

 Examples

 Summary / Q&A

DB2 11 Objectives for Table Versioning

 Remove some restrictions for implementing
Temporal Tables (introduced w/DB2 10)

 Provide easier development with temporal
tables

 Ease manageability by reducing the size of the
active database

 Great use case for Transparent Archiving!

Temporal High Level Review

 Business Time

 Begin & End business time columns

 Set by the application

 Modifications to SQL

 Update/Delete modify periods

 Could split rows to preserve Business Time

 System Time

 Begin, End, and Trans time columns

 Maintained by DB2

 History Table for previous row versions

 UPDATE/DELETE

 DB2 populates the History Table

 DML changes for SELECT only

 Implicit UNION ALL to query History

B
e
g
in

T
im

e

E
n
d

T
im

e

Application Period Table

B
e
g
in

T

im
e

E
n
d

T
im

e

T
ra

n
s

ID

System Period Table

B
e
g
in

T

im
e

E
n
d

T
im

e

T
ra

n
s

ID

History Table

UPDATE/DELETE

Temporal Special Registers …

 Enable customers to be able to code applications using temporal data
and to be able to test the system, possibly “without changing code”

 DB2 will be able to run the same query for different times by changing
the special registers

 Have the ability to run AS OF any date by changing the special register

 Provides “Time Machine” capability

 Setting the temporal special registers to a specific point in time

 Works for all subsequent SQL statements

 Including those in invoked functions, stored procedures, and triggers

 This allows the application to see data from a different point in time
without modifying the SQL statements

 CURRENT TEMPORAL SYSTEM_TIME

 TIMESTAMP(12), nullable

 CURRENT TEMPORAL BUSINESS_TIME

 TIMESTAMP(12), nullable

 SET Temporal Registers

 For DRDA the value of the special register is sent to remote side for implicit connect

 When using a 3-part name

 If you use the special registers, they continue to be used for that session until you turn
them off by setting them to NULL

 We add these predicates when there are direct or indirect references to
Business Time or System Time tables

Temporal Special Registers

 Bind parameters determine if the Special Register will be honored when set

 SYSTIMESENSITIVE (YES / NO)

 BUSTIMESENSITIVE (YES / NO)

 BIND PACKAGE

 Default Value - YES

 REBIND PACKAGE

 Default Value – Existing Option

 REBIND TRIGGER PACKAGE

 Default Value – Existing Option

 SYSTEM_TIME SENSITIVE and BUSINESS_TIME SENSITIVE for Routines

 Options on CREATE / ALTER SQL Scalar Procedure or Function

 INHERIT SPECIAL REGISTERS passes set values from invoker by default

 DEFAULT SPECIAL REGISTERS will reset to NULL

 DB2I support

 Set CHANGE DEFAULTS to YES to find these options

Temporal Special Registers

Temporal Special Registers ...
 Bind / Rebind two section implementation

 Bind/Rebind keywords cause System Time / Bitemporal tables to bind SQL twice
 Original section

 Bind the original SQL for non-temporal access / no temporal predicates

 The majority of System Time applications request for current data only

 There is no performance degradation caused by UNION ALL query
transformation

 Extended section

 System Time SQL uses UNION ALL to the associated History Table

 Business Time & System Time temporal predicates, as appropriate

 SQL accessing temporal tables does not have to be changed
 At execution time

 If the Temporal Special Register is not set (the default), Original Section used
 If the Temporal Special Register is set, Extended Section used

 EXPANSION_REASON

 In several Catalog & EXPLAIN tables to indentify extended SQL

Temporal Special Registers ...

 In PLAN_TABLE, there is a new column called EXPANSION_REASON,
which is populated when statements reference temporal or archive tables

 A: Query has implicit query transformation as a result of the
SYSIBMADM.GET_ARCHIVE built-in global variable

 B: Query has implicit query transformation as a result of the CURRENT
TEMPORAL BUSINESS_TIME special register

 S: Query has implicit query transformation as a result of the CURRENT
TEMPORAL SYSTEM_TIME special register

 SB: Query has implicit query transformation as a result of BOTH the
CURRENT TEMPORAL SYSTEM_TIME special register and the
CURRENT TEMPORAL BUSINESS_TIME special register

 Blank: The query does not contain implicit query transformation

Temporal Special Registers System Time ...
 If the register is set to a valid not null value DB2 will add the clause

 FOR SYSTEM TIME AS OF CURRENT TEMPORAL
SYSTEM_TIME

 To static and dynamic SQL statements referencing System time and
bi-temporal tables

 Including indirect references in a View or via a Trigger

 An explicit FOR SYSTEM_TIME period specification produces
SQLCODE -20524

 You can not use FOR or AS OF SYSTEM_TIME with the special
register

 Any INSERT, UPDATE, DELETE, or MERGE (data modification)
statements against System Time tables produces SQLCODE -20535

 Data modification statements are allowed against Regular Tables

Temporal Special Registers System Time ...

 Base table

 All Copays are currently
$15

 All were UPDATEd on
9/24/2013

 History table

 Copays were different
values in the past

 Recorded in History by
the 9/24/2013 UPDATE

Temporal Special Registers System Time ...

 Set CURRENT TEMPORAL SYSTEM_TIME register to before the UPDATE

 SELECT all rows that were in effect at that time

 Rows all have the before update occurred

Explain shows UNION ALL

Temporal Special Registers System Time ...

 Reset CURRENT TEMPORAL SYSTEM_TIME register to NULL

 SELECT rows from base table (Same SELECT statement)

 All rows all have COPAY value of $15 which is the current value in the table

Explain shows no access to history table

1

5

Temporal Special Registers Business Time ...
 If the register is set to a valid not null value DB2 will add the

clause

 FOR BUSINESS TIME AS OF CURRENT TEMPORAL
BUSINESS_TIME

 Static and dynamic SQL statements referencing business
time and bi-temporal tables

 Including indirect references in a View or via a Trigger

 DB2 will cast the CURRENT TEMPORAL BUSINESS_TIME to
the column definition of either DATE or TIMESTAMP(6)

 start_date <= CAST(CURRENT TEMPORAL
BUSINESS_TIME AS DATE/TIMESTAMP(6))

 end_date > CAST(CURRENT TEMPORAL
BUSINESS_TIME AS DATE/TIMESTAMP(6))

1

6

Temporal Special Registers Business Time ...

 An explicit FOR BUSINESS_TIME period specification produces an error

 For UPDATE or DELETE

 Where CURRENT TEMPORAL BUSINESS_TIME register is not
NULL and BUSTIMESENSITIVE(YES)

 Predicates are generated as shown above

 FOR PORTION OF can also be included

 Normal Temporal UPDATE or DELETE logic will be performed

 Potentially splitting existing rows

1

7

Temporal Special Registers Business Time ...

̶ The left side shows that when we set the CURRENT BUSINESS_TIME register to NULL

• All qualifying rows returned

̶ The right side shows that when we set the CURRENT BUSINESS_TIME register to a value

• Rows returned AS OF the specified time

• Row D054 is not included because the BUS_END date is the same as the CURRENT

BUSINESS_TIME register, and the BUS_END is exclusive, meaning that 2012-12-30 is

not part of the row

 CURRENT TEMPORAL BUSINESS_TIME special register example

Versioning & Views …

 DB2 11 - You can use temporal predicates when referring to a view

 DB2 10 & DB2 11 - You can not use temporal predicates in a view

 Temporal predicates can now be used in DML on statements referencing
views

Base Table VIEW

SQLCODE -4736

Table

View 2012

SQL perspective

Versioning & Views Example …

Rows in Base Table (POLICY_BITEMPORAL)

 Select Rows from view using AS OF business time

Row is not in the view because

BUS_END <=01/01/2012

Remember the view

 Show how the date predicates on the view work with the FOR BUSINESS_TIME

predicate in the SQL statement

Row is not in the view because

BUS_BEG IS > 12/31/2012

Row is in the view, but not returned

because Business End time is

exclusive

BUS_END = 12/30/2012

Versioning & Views Temporal Modifications ...
 UPDATE or DELETE with the FOR PORTION OF clause can be

applied to Views

 Temporal modifications can cause rows to be split

 Rows that are created by splitting a row through a VIEW update
may not be visible in the view after the update

 Symmetric Views are Views WITH CHECK OPTION

 Temporal modifications are not constrained by the check option

 Split rows that disappear from the View definition are still
allowed for a complete temporal modification

A054 P667

1/1/2004 12/31/9999

A054 P667 A054 P667

5/1/2011 10/31/2012

A054 PPO
Not visible

via View

 What is the purpose of archiving?

 When you want to delete rows from the table, but need to keep the deleted rows for legal
or business purposes

 To move data to a cheaper storage medium

 When you do not need to access the old data often, but need to be able to retrieve the
data quickly

 When you do not care about the lineage of a row

 This means that you do not care about the changes to a row over time

 Do we add extra columns for archiving like we do for system time tables?

 You do not need extra columns to enable Archive Transparency

 Temporal and Archive Tables are mutually exclusive

 Can not build an Archive Table on a table that has either Business Time or System Time

 Archive a large amount of data using REORG DISCARD to facilitate
migration

 User would be responsible for loading data from the DISCARD file into the archive table

Archive Transparency

Archive Transparency Compared to System Time

System Time Archive Transparency

Tables Base table & History table

same column #, column name,
column attributes (data type,
etc)

Base table & Archive table

same column #, column name,
column attributes (data type, etc)

Additional columns ROW BEGIN/ROW END/TRANS
ID columns

No additional columns required

Compatible with
Period enabled tables

Compatible with Business
Time

No

Data propagation to
history/archive table

UPDATE and DELETE DELETE
SYSIBMADM.MOVE_TO_ARCHIVE

Utilities can be used
(REORG...DISCARD,LOAD...RESUME)

Implicit UNION ALL
query transformation

Controlled by:
CURRENT TEMPORAL
SYSTEM_TIME special register
&
SYSTIMESENTIVE RE/BIND
option

EXPANSION_REASON=S

Controlled by built-in global variable
SYSIBMADM.GET_ARCHIVE

EXPANSION_REASON=A

Archive Transparency Management ...
Base Table Archive Table

Activate archiving

Create the base table

Create the archive table

Tell DB2 to associate the base table with the archive table

ALTER ADD COLUMN to the Base Table propagates the column to

the Archive Table

OR

Archive Transparency Management
 Use the ALTER TABLE ... DISABLE clause to remove relationship between base and archive

tables

 This may be required for Table schema ALTERs other than ADD COLUMN

 When Archive relationship is enabled

 Archive table is TYPE is ‘R’

 ARCHIVING_TABLE column is populated

Before Disable Archive

After Disable Archive

Archive Transparency Global Variables ...

 Built-in Global Variables that impact archival tables & processing

 Defined as CHAR(1) NOT NULL DEFAULT ‘N’

 READ authority granted to PUBLIC

 SYSIBMADM.GET_ARCHIVE

 Determines if SELECTs against Archive Enabled (Base) Tables
automatically UNION ALL the associated Archive Table

 'Y‘ includes the UNION ALL to Archive Tables

 Packages must be bound ARCHIVESENSITVE(YES)

 SYSIBMADM.MOVE_TO_ARCHIVE

 Determines if deleted rows of Archive Enabled Tables are inserted
into associated Archive Tables

 ‘Y’: INSERT and UPDATE not allowed against the Archive Enabled
(Base) Tables

 ‘E’: INSERT and UPDATE allowed against the Base Tables

Archive Transparency
 These settings for BIND will control the sensitivity of the SYSIBMADM.GET_ARCHIVE global

variable:

 ARCHIVESENSITIVE (default YES) – packages (No space between ARCHIVE and
SENSITIVE))

 BIND PACKAGE

 REBIND PACKAGE

 REBIND TRIGGER PACKAGE

 CREATE TRIGGER (implicit trigger package)

 ARCHIVE SENSITIVE (default YES) – UDFs and Stored Procedures (space between
ARCHIVE & SENSITIVE)

 CREATE FUNCTION (SQL scalar)

 ALTER FUNCTION (SQL scalar)

 CREATE PROCEDURE (SQL native)

 ALTER PROCEDURE (SQL native)

 If you REBIND a package and change ARCHIVESENSITIVE, all copies of the package will be
purged

 APREUSE and APCOMPARE are valid options

 You can set the EXPANSION_REASON in the Access Path repository

 DB2I Panels support ARCHIVESENSITIVE

Archive Transparency Example ...

We set the Global variable MOVE_TO_ARCHIVE to ‘Y’

and then issue the DELETE command where the

START_DATE is prior to December 31, 2010

The rows that were deleted from the base table are inserted into the archive table

The Timestamp in the Archive Table has the time the row was archived, not the time in the base table

Microseconds are

greater in the archive

table than the base

(archive-enabled)

table

Archive-enabled

table has 6 rows

 Archive all rows where START_DATE less than December 31, 2010

Archive Transparency Example ...

 To select data from both the base and archive tables

 Set GET_ARCHIVE global variable to ‘Y’ before the select statement
̶ Can add an indicator column (ex. BASE_ARCHIVE CHAR(01)) to both tables

to indicate from where the row was sourced

̶ Base column defaults to one value (Ex. “B”)

̶ INSERT Trigger on the Archive column to set a different value (Ex. “A”)

To select data from only the base table

 Set GET_ARCHIVE global variable to ‘N’ before the select statement

Archive Transparency Example ...

 Searched UPDATEs will only update base table rows whether the
GET_ARCHIVE is set to Y or N

 In the first example, we set the GET_ARCHIVE to ‘Y’ so that the
SELECT will retrieve rows from both

 The Base and Archive tables, and you can see that only the
base rows were updated

Archive Transparency Restrictions
 Restrictions

 LOAD utility will not allow REPLACE option if the table is archived-enabled

 Columns can not be ALTERed, RENAMEd or DROPped in either a base or archive table

 If MOVE_TO_ARCHIVE = ‘Y’, INSERT, UPDATE & MERGE against the base

 PERIOD can not be added to a base or archive table

 A foreign key can not be defined on an archive table

 ROTATE partitions

 MQT

 Row Permissions and Column Masks

 CLONE table

 A data change statement cannot reference temporal table in same statement as reference to archive
table

 Positioned UPDATEs and Positioned/Searched DELETEs against base tables not allowed when

 GET_ARCHIVE = ‘Y’ and

 Bound ARCHIVESENSITIVE YES

 If the target of the INSERT is a view that is defined with the WITH CHECK OPTION, the definition of
the view must not reference an archive-enabled table

 If you use a DYNAMIC SENSITIVE SCROLLable cursor, you can run with GET_ARCHIVE=‘N’,

but if you run with GET_ARCHIVE=‘Y’ you get -525 SQL error

Archive Transparency ...

 When the BIND is performed with an Archive Enabled Table

 We create two sections in the package when ARCHIVESENSITIVE is YES

 First section - Base table only

 Second section - Base table and archive table UNION’ed ALL together

 ARCHIVESENSITIVE only refers to GET_ARCHIVE sensitivity

 When the GET_ARCHIVE global variable is set to ‘N’

 DB2 will use the base table only section

 When the GET_ARCHIVE global variable is set to ‘Y’

 DB2 will use the base and archive table section

 When MOVE_TO_ARCHIVE is set to ‘Y’

 DB2 will move rows to archive table on a DELETE even if
ARCHIVESENSITIVE BIND option is set to NO

 This prevents data not being archived if the program tells it to archive

 When archiving data, you would usually set GET_ARCHIVE to ‘N’ and
MOVE_TO_ARCHIVE as ‘Y’

Archive Transparency EXPLAIN ...

In our example, Data in SYSPACKSTMT has

–SECTNO = 1 for archive-enabled table only and

–SECTNO = 3 for archive-enabled table UNIONed with archive table

– STATEMENT stored as the original statement with EXPANSION_REASON of ‘A’

Archive Transparency EXPLAIN ...

Here you can see that there are two sections in the package in PLAN_TABLE

Section 1 is the base section and will be used when GET_ARCHIVE=‘N’

Section 3 is the expanded section and will be used when GET_ARCHIVE = ‘Y’

More information is available in

DSN_STATEMNT_TABLE

DSN_STAT_FEEDBACK

DSN_STRUCT_TABLE

DSN_DETCOST_TABLE

3

5

Archive Transparency EXPLAIN

 EXPANSION_REASON added to the following tables

 DSN_COLDIST_TABLE

 DSN_DETCOST_TABLE

 DSN_FILTER_TABLE

 DSN_FUNCTION_TABLE

 DSN_KEYTGTDIST_TABLE

 DSN_PGRANGE_TABLE

 DSN_PGROUP_TABLE

 DSN_PREDICATE_SELECTIVITY

 DSN_PREDICAT_TABLE

 DSN_PTASK_TABLE

 DSN_QUERYINFO_TABLE

 DSN_QUERY_TABLE

 DSN_SORTKEY_TABLE

 DSN_SORT_TABLE

 DSN_STATEMENT_CACHE_TABLE

 DSN_STATEMNT_TABLE

 DSN_STRUCT_TABLE

 DSN_VIEWREF_TABLE

 PLAN_TABLE

36

Archive Transparency Comparison

 Archive Transparency

 Works one a single table

 Deletes the entire row from the base table

 Inserts the deleted row into a DB2 archive table

 May not satisfy legal archival requirements

 IBM InfoSphere Optim Data Growth Solution

 Works on business objects

 Can delete selected rows (keep customer, delete orders) from
the base table

 Writes row to a non updateable extract file

 Satisfies legal archival requirements

