DB2 11 for z/OS Transparent Archiving
(aka as database versioning)

Triangle DB2 User’s Group Meeting
December 4, 2014

Stan Goodwin
Technical Sales Specialist
DB2 Advisor for z/OS
IBM Mid-Atlantic Region
segoodw@us.ibm.com
{

P € X

AL
~ -
==
===
===
' &

Disclaimer and Trademarks

Information contained in this material has not been submitted to any formal IBM review and is
distributed on "as is" basis without any warranty either expressed or implied. Measurements data
have been obtained in laboratory environment. Information in this presentation about IBM's
future plans reflect current thinking and is subject to change at IBM's business discretion. You
should not rely on such information to make business plans. The use of this information is a
customer responsibility.

IBM MAY HAVE PATENTS OR PENDING PATENT APPLICATIONS COVERING SUBJECT
MATTER IN THIS DOCUMENT. THE FURNISHING OF THIS DOCUMENT DOES NOT IMPLY
GIVING LICENSE TO THESE PATENTS.

TRADEMARKS: THE FOLLOWING TERMS ARE TRADEMARKS OR ® REGISTERED
TRADEMARKS OF THE IBM CORPORATION IN THE UNITED STATES AND/OR OTHER
COUNTRIES: AIX, DATABASE 2, DB2, Enterprise Storage Server, FICON, FlashCopy, Netfinity,
RISC, RISC SYSTEM/6000, System i, System p, System x, System z, IBM, Lotus, NOTES,
WebSphere, z/Architecture, z/OS, zSeries

The FOLLOWING TERMS ARE TRADEMARKS OR REGISTERED TRADEMARKS OF THE
MICROSOFT CORPORATION IN THE UNITED STATES AND/OR OTHER COUNTRIES:
MICROSOFT, WINDOWS, WINDOWS NT, ODBC, WINDOWS 95

For additional information see ibm.com/legal/copytrade.phtml

Agenda

« DB2 10 Temporal Tables — review and what's new
. New Temporal Special Registers for v11
« Temporal predicates in DB2 views
« DB2 11 Transparent Archiving
o Whatis it?
. Archive management
. Examples

o Summary / Q&A

DB2 11 Objectives for Table Versioning

« Remove some restrictions for implementing
Temporal Tables (introduced w/DB2 10)

« Provide easier development with temporal
tables

« Ease manageabillity by reducing the size of the
active database

- Great use case for Transparent Archiving!

Temporal High Level Review

« Business Time

Begin & End business time columns
Set by the application
Modifications to SQL

Update/Delete modify periods
« Could split rows to preserve Business Time

« System Time

Begin, End, and Trans time columns
Maintained by DB2
History Table for previous row versions

UPDATE/DELETE
. DB2 populates the History Table

DML changes for SELECT only
« Implicit UNION ALL to query History

Application Period Table

WL

uibag
swilL
pu3

System Period Table

SuIL

uibag
ClOINE

P i—

U

pus

O

suel|

PDATE/DELETE

History Table

swl]

uibag

L

pus

dail
suel |

Temporal Special Registers ...

Enable customers to be able to code applications using temporal data

and to be able to test the system, possibly “without changing code”

the special registers

Provides “Time Machine” capability

DB2 will be able to run the same query for different times by changing

Have the ability to run AS OF any date by changing the special register

Setting the temporal special registers to a specific point in time

Works for all subsequent SQL statements

Including those in invoked functions, stored procedures, and triggers

This allows the application to see data from a different point in time

without modifying the SQL statements

Temporal Special Registers

CURRENT TEMPORAL SYSTEM_TIME
- TIMESTAMP(12), nullable
CURRENT TEMPORAL BUSINESS TIME
- TIMESTAMP(12), nullable
SET Temporal Registers

For DRDA the value of the special register is sent to remote side for implicit connect

« When using a 3-part name

If you use the special registers, they continue to be used for that session until you turn

them off by setting them to NULL

We add these predicates when there are direct or indirect references to

Business Time or System Time tables

SET CURRENT TEMPORAL SYSTEM_TIME = TIMESTAMP('2008-01-01') + 5 DAYS ;
SET CURRENT TEMPORAL SYSTEM_TIME = CURRENT TIMESTAMP - 1 YEAR ;
SET CURRENT TEMPORAL SYSTEM_TIME = NULL ;

SET CURRENT TEMPORAL BUSINESS_TIME = TIMESTAMP('2008-01-01') + 5 DAYS;
SET CURRENT TEMPORAL BUSINESS_TIME = CURRENT TIMESTAMP - 1 YEAR ;
SET CURRENT TEMPORAL BUSINESS_TIME = NULL ;

Temporal Special Registers

. Bind parameters determine if the Special Register will be honored when set
SYSTIMESENSITIVE (YES / NO)
BUSTIMESENSITIVE (YES / NO)
BIND PACKAGE
« Default Value - YES
REBIND PACKAGE
« Default Value — Existing Option

REBIND TRIGGER PACKAGE
. Default Value — Existing Option

« SYSTEM_TIME SENSITIVE and BUSINESS TIME SENSITIVE for Routines
- Options on CREATE / ALTER SQL Scalar Procedure or Function

- INHERIT SPECIAL REGISTERS passes set values from invoker by default
« DEFAULT SPECIAL REGISTERS will reset to NULL l

. DB2I support

- Set CHANGE DEFAULTS to YES to find these options N\,
4,
Q@

S

Temporal Special Registers ...

. Bind / Rebind two section implementation
- Bind/Rebind keywords cause System Time / Bitemporal tables to bind SQL twice
- Original section
. Bind the original SQL for non-temporal access / no temporal predicates

. The majority of System Time applications request for current data only

- There is no performance degradation caused by UNION ALL query
transformation

- Extended section
. System Time SQL uses UNION ALL to the associated History Table
. Business Time & System Time temporal predicates, as appropriate

- SQL accessing temporal tables does not have to be changed

« At execution time
- If the Temporal Special Register is not set (the default), Original Section used
- If the Temporal Special Register is set, Extended Section used

« EXPANSION_REASON

- In several Catalog & EXPLAIN tables to indentify extended SQL l‘

Temporal Special Registers ...

In PLAN_TABLE, there is a new column called EXPANSION_REASON,
which is populated when statements reference temporal or archive tables

- A: Query has implicit query transformation as a result of the

SYSIBMADM.GET_ARCHIVE built-in global variable

- B: Query has implicit query transformation as a result of the CURRENT

TEMPORAL BUSINESS_TIME special register

- S: Query has implicit query transformation as a result of the CURRENT

TEMPORAL SYSTEM_TIME special register

- SB: Query has implicit query transformation as a result of BOTH the
CURRENT TEMPORAL SYSTEM_TIME special register and the
CURRENT TEMPORAL BUSINESS_TIME special register

- Blank: The query does not contain implicit query transformation

SET CURRENT TEMPORAL BUSINESS_TIME = TIMESTAMP('01/01/2013');
SET CURRENT TEMPORAL SYSTEM_TIME = TIMESTAMP('01/01/2013");

EXPLAIN PLAN SET QUERYNO = 13 FOR
SELECT
EMPL ,COPAY ,BUS_BEG, BUS_END
FROM POLICY_BITEMPORAL ORDER BY EMPL, BUS_BEG;

SELECT EXPANSION_REASON FROM PLAN_TABLE;

EXPANSION_REASON ‘

Temporal Special Registers System Time ...
« If the register is set to a valid not null value DB2 will add the clause

- FOR SYSTEM TIME AS OF CURRENT TEMPORAL
SYSTEM_TIME

. To static and dynamic SQL statements referencing System time and
bi-temporal tables

« Including indirect references in a View or via a Trigger

« An explicit FOR SYSTEM_TIME period specification produces
SQLCODE -20524

- You can not use FOR or AS OF SYSTEM_TIME with the special
register

. Any INSERT, UPDATE, DELETE, or MERGE (data modification)
statements against System Time tables produces SQLCODE -20535

. Data modification statements are allowed against Regular Tables

Temporal Special Registers System Time ...

. Base table

- All Copays are currently

$15

All were UPDATEd on
9/24/2013

. History table

Copays were different
values in the past

Recorded in History by
the 9/24/2013 UPDATE

————————— B bt e e et e e
EMPL SYS_BEG SYS_END COPAY BUS_BEG BUS_END

————————— e T e e L
AO54 2013-09-24 9999-12-30 $15 2001-01-01 9999-12-31
BO54 2013-09-24 9999-12-30 $15 2013-01-01 9999-12-31
C054 2013-09-24 9999-12-30 $15 2004-01-01 2011-12-31
D054 2013-09-24 9999-12-30 $15 2012-01-01 2012-12-30
EO54 2013-09-24 9999-12-30 $15 2012-01-01 2014-12-30
————————— B e e e e E e e e e
EMPL SYS_BEG SYS_END COPAY BUS_BEG BUS_END

————————— e e e e e L
A0O54 2013-08-23 2013-09-24 $20 2001-01-01 9999-12-31
BO54 2013-08-02 2013-09-24 $10 2013-01-01 9999-12-31
C054 2013-08-02 2013-09-24 $10 2004-01-01 2011-12-31
D054 2013-08-02 2013-09-24 $10 2012-01-01 2012-12-30
EO54 2013-08-02 2013-09-24 $20 2012-01-01 2014-12-30

52

X,
X

P 7 el \

Temporal Special Registers System Time ...

« Set CURRENT TEMPORAL SYSTEM_TIME reqister to before the UPDATE
o SELECT all rows that were in effect at that time

SET CURRENT TEMPORAL SYSTEM_TIME
= '2013-09-20-00.00.00.123123123123";

Explain shows UNION ALL

SELECT EMPL QBLOCKNO TABLE_NAME METHOD TABNO QBLOCK EXPANSION

,DATE(SYS_BEG) AS SYS_BEG TYPE REASON
sDATE(SYS_END) AS SYS_END 1 POLICY_HISTORY 0 2 NCOSUB S
, COPAY 2 3 0 UNIONA S
,BUS_BEG 5 POLICY_BITEMPORAL 0 1 NCosuB S
,BUS_END

FROM POLICY_BITEMPORAL
ORDER BY EMPL, SYS_BEG DESC;

= Rows all have the before update occurred

————————— e e e
SYS_BEG SYS END COPAY BUS _BEG BUS _END

2013-08-23

2013-08-02
2013-08-02
2013-08-02
2013-08-02

2013 09-24
2013-09-24
2013-09-24
2013-09-24
2013-09-24

2001 01-01
2013-01-01
2004-01-01
2012-01-01
2012-01-01

9999 12-31
9999-12-31
2011-12-31
2012-12-30
2014-12-30

Temporal Special Registers System Time ...

« Reset CURRENT TEMPORAL SYSTEM_TIME register to NULL
« SELECT rows from base table (Same SELECT statement)

SET CURRENT TEMPORAL SYSTEM_TIME = NULL;

SELECT EMPL
,DATE(SYS_BEG) AS SYS_BEG
,DATECSYS_END) AS SYS_END
, COPAY
,BUS_BEG
,BUS_END

FROM POLICY_BITEMPORAL

ORDER BY EMPL, SYS_BEG DESC;

Explain shows no access to history table

QBLOCKNO TABLE_NAME METHOD TABNO QBLOCK EXPANSION
TYPE REASON
1 3 0 SELECT
1 POLICY_BITEMPORAL 0 1 SELECT

= All rows all have COPAY value of $15 which is the current value in the table

BUS_END

SYS_END BUS_BEG

EMPL COPAY SYS_BEG

—_—— e = = — - .'. _________ .'.____
A5 4 $15 2013-07-09
BS54 $15 2013-07-09
cCe54 $15 2013-07-09
D54 $15 2013-07-09
E®54 $15 2013-07-09

9999-12-30
9999-12-30
9999-12-30
9999-12-30
9999-12-30

2004-01-01
2013-01-01
2004-01-01
2004-01-01
2012-01-01

9999-12-31
9999-12-31
2011-12-31
2012-12-30
2014-12-30

Temporal Special Registers Business Time ...

. Ifthe register is set to a valid not null value DB2 will add the
clause

FOR BUSINESS TIME AS OF CURRENT TEMPORAL
BUSINESS_TIME

Static and dynamic SQL statements referencing business
time and bi-temporal tables

Including indirect references in a View or via a Trigger

. DB2 will castthe CURRENT TEMPORAL BUSINESS_ TIME to
the column definition of either DATE or TIMESTAMP(6)

start_date <= CAST(CURRENT TEMPORAL
BUSINESS_TIME AS DATE/TIMESTAMP(6))

end_date > CAST(CURRENT TEMPORAL
BUSINESS_TIME AS DATE/TIMESTAMP(6))

Temporal Special Registers Business Time ...

« An explicit FOR BUSINESS TIME period specification produces an error
« For UPDATE or DELETE

- Where CURRENT TEMPORAL BUSINESS TIME register is not
NULL and BUSTIMESENSITIVE(YES)

- Predicates are generated as shown above

« FOR PORTION OF can also be included
- Normal Temporal UPDATE or DELETE logic will be performed
- Potentially splitting existing rows

Temporal Special Registers Business Time ...

« CURRENT TEMPORAL BUSINESS_TIME special register example

SET CURRENT TEMPORAL BUSINESS_TIME = NULL; SET CURRENT TEMPORAL BUSINESS_TIME = TIMESTAMP('12/30/2012');

SELECT EMPL,COPAY,BUS_BEG,BUS_END SELECT EMPL,COPAY,BUS_BEG,BUS_END

FROM POLICY_BITEMPORAL FROM POLICY_BITEMPORAL

ORDER BY EMPL, BUS_BEG; ORDER BY EMPL, BUS_BEG;

EMPL COPAY BUS_BEG BUS_END EMPL COPAY BUS_BEG BUS_END

_________ LT T Teu Ry e e it shl bkt o
-01 - -172- AO54 $10 2004-01-01 9999-12-31

e a0 2000l Seeaiialil EO54 $10 2012-01-01 2014-12-30

C054 %10 2004-01-01 2011-12-31

D054 $10 2012-01-01 2012-12-30

EO54 $10 2012-01-01 2014-12-30

— The left side shows that when we set the CURRENT BUSINESS_ TIME register to NULL
« All qualifying rows returned

— The right side shows that when we set the CURRENT BUSINESS_TIME register to a value
* Rows returned AS OF the specified time

* Row D054 is not included because the BUS END date is the same as the CURRENT
BUSINESS TIME register, and the BUS_END is exclusive, meaning that 2012-12-30 is l

not part of the row ‘
\

XX

“__.\

Versioning & Views ...

. DB2 11 - You can use temporal predicates when referring to a view
. DB2 10 & DB2 11 - You can not use temporal predicates in a view

Base Table VIEW

CREATE TABLE POLICY_BITEMPORAL

{EMPL VARCHARH) NO? NULL, CREATE VIEW VIEW_POLICY_BITEMPORAL_ZOlz_ONLY AS
TYPE VARCHAR(4), SELECT * FROM POLICY_BITEMPORAL

PLCY VARCHAR(4) NOT NULL, WHERE BUS_BEG <= '12/31/2012'

COPAY VARCHAR(4),

SYS_BEG TIMESTAMP(12) GENERATED ALWAYS AS ROW BEGIN NOT NULL,
SYS_END TIMESTAMP(12) GENERATED ALWAYS AS ROW END NOT NULL,
SYS_TMP TIMESTAMP(12) GENERATED ALWAYS AS TRANSACTION START ID,
PERIOD SYSTEM_TIME (SYS_BEG, SYS_END),

AND BUS_END »= '01/01/2012" WITH CHECK OPTION;

BUS_BEG DATE NOT NULL,

BUS_END DATE NOT NULL. CREATE VEEW VIEW_POLICY_BITEMPORAL_2012_ONLY AS

PERIOD BUSINESS_TIME (BUS_BEG, BUS_END), SELECT * FROM POLICY BITEWPORAL |
PRIMARY KEY (EMPL,PLCY, BUSINESS_TIME WITHOUT OVERLAPS) FOR BUSINESS_TIME FROM '01/01/2012" TO '12/30/2012";
)i SQLCODE -4736

. Temporal predicates can now be used in DML on statements referencing
views

SQL perspective |

SELECT EMPL,TYPE,PLCY,COPAY,BUS_BEG,BUS_END View 2012
FROM VIEW_POLICY_BITEMPORAL_2012_ONLY
FOR BUSINESS_TIME AS OF '12/30/2012'; «Table —

Versioning & Views Example ...

= Show how the date predicates on the view work with the FOR BUSINESS TIME
predicate in the SQL statement

Rows in Base Table (POLICY_BITEMPORAL)

=Remember the view

EMPL TYPE PLCY COPAY BUS_BEG BUS_END

————————— e e e E L L L L E

AD54 HMO P667 $10 2004-01-01 9999-12-31 CREATE VIEW XIEW_POLICY_BITEMPORAL_2012_ONLY AS
BOS4 HMO P667 $10 2013-01-01 9999-12-31 WHERE BUS. BEG <o "12/31/2012" @ -

C054 HMO P667 $10 2004-01-01 2011-12-31 AND BUS_END >= '01/01/2012' WITH CHECK OPTION;

D054 HMO P667 $10 2012-01-01 2012-12-30
[EO54 HMO P667 $10 2012-01-01 2014-12-30

= Select Rows from view using AS OF business time

SELECT X FROM VIEW_POLICY_BITEMPORAL_2012_ONLY
FOR BUSINESS_TIME AS OF '12/30/2012°";

Row is not in the view because

EMPL TYPE PLCY COPAY BUS_BEG BUS_END _— BUS BEG IS > 12/31/2012

————————- +-——————— +-——————— +-——————— +-—--=
ey | AO54 HMO P667 $10 2004-01-01 9
BOSH—HMO——P667 5§10 ZoT5=01=01 Row is not in the view because
-5 HMe— P67 5t——2664=01=01% @1}—1%—%1 ol BUS END <=01/01/2012

EO54 HMO P667 $10 2012-01-01 2014-12-30 ™ Row is in the view, but not returned
\ because Business End time is

exclusive
BUS_END = 12/30/2012

&

“__.\

Versioning & Views Temporal Modifications ...

« UPDATE or DELETE with the FOR PORTION OF clause can be
applied to Views

« Temporal modifications can cause rows to be split

- Rows that are created by splitting a row through a VIEW update
may not be visible in the view after the update

UPDATE VIEW_POLICY_BITEMPORAL_2012_ONLY
FOR PORTION OF BUSINESS_TIME
FROM '05/01/2011' TO '10/31/2012°
SET PLCY = '"PPO';

« Symmetric Views are Views WITH CHECK OPTION
- Temporal modifications are not constrained by the check option

- Split rows that disappear from the View definition are still
allowed for a complete temporal modification

1/1/2004 5/1/2011 10/31/2012
A054 P667 ‘

wifaoss pesr |mosammPOmIII| Acss Poo7

12/31/9999

DB2 11 Archive Transparency

Why DB2 Archive Transparency Poor Application
Performance
- In database system, querying and managing Apm%
tables that contain a large amount of data is 0"’0_
a common problem |
-> performance of maintaining large table is | | . \o}_, |

a key customer pain points

-~ One known solution is to archive the inactive/cold data
to a different environment -- challenges on the ease of use and

performance:

o How to provide easy access to both current and archived data
within single query

o How to make data archiving and access “transparent” with
minimum abplication chanaes O‘
2254

“__.\

Archive Transparency
« What is the purpose of archiving?

- When you want to delete rows from the table, but need to keep the deleted rows for legal
or business purposes

- To move data to a cheaper storage medium

- When you do not need to access the old data often, but need to be able to retrieve the
data quickly

- When you do not care about the lineage of a row
. This means that you do not care about the changes to a row over time
« Do we add extra columns for archiving like we do for system time tables?
- You do not need extra columns to enable Archive Transparency
. Temporal and Archive Tables are mutually exclusive

—- Can not build an Archive Table on a table that has either Business Time or System Time

« Archive a large amount of data using REORG DISCARD to facilitate

migration l
- User would be responsible for loading data from the DISCARD file into the archive table
N\,

2 XX

[
e Q@

Archive Trans

parency Compared to System Time

Tables

Base table & History table

same column #, column name,
column attributes (data type,
etc)

Base table & Archive table

same column #, column name,
column attributes (data type, etc)

Additional columns

ROW BEGIN/ROW END/TRANS
ID columns

No additional columns required

Data propagation to
history/archive table

Compatible with Compatible with Business No
Period enabled tables | Time
UPDATE and DELETE DELETE

SYSIBMADM.MOVE_TO_ARCHIVE

Utilities can be used
(REORG...DISCARD,LOAD...RESUME)

Implicit UNION ALL
query transformation

Controlled by:

CURRENT TEMPORAL
SYSTEM_TIME special register
&

SYSTIMESENTIVE RE/BIND
option

EXPANSION_REASON=S

Controlled by built-in global variable
SYSIBMADM.GET_ARCHIVE

EXPANSION_REASON=A

. X'

Archive Transparency Management ...

Base Table Archive Table
CREATE TABLE POLICY_BASE CREATE TABLE POLICY_ARCHIVE
(EMPL VARCHAR(4) NOT NULL, (EMPL VARCHAR(4) NOT NULL,
TYPE VARCHAR(4), TYPE VARCHAR(4),
PLCY VARCHAR(4) NOT NULL, PLCY VARCHAR(4) NOT NULL,
COPAY VARCHAR(4), COPAY VARCHAR(4),
START_DATE DATE NOT NULL, START_DATE DATE NOT NULL,
TIMESTAMPL TIMESTAMP NOT NULL GENERATED ALWAYS TIMESTAMPL TIMESTAMP NOT NULL GENERATED ALWAYS
FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP, FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP,
PRIMARY KEY (EMPL,PLCY)); PRIMARY KEY (EMPL,PLCY));
CREATE TABLE POLICY_ARCHIVE
OR LIKE POLICY_BASE
H = INCLUDING ROW CHANGE TIMESTAMP;
Activate archiving

ALTER TABLE POLICY_BASE ENABLE ARCHIVE USE POLICY_ARCHIVE;

=Create the base table
=Create the archive table
=Tell DB2 to associate the base table with the archive table

*ALTER ADD COLUMN to the Base Table propagates the column to
the Archive Table ‘ ‘
X

i
P SN

Archive Transparency Management

. U%Ie the ALTER TABLE ... DISABLE clause to remove relationship between base and archive
tables

- This may be required for Table schema ALTERs other than ADD COLUMN
« When Archive relationship is enabled

- Archive table is TYPE is ‘R’

- ARCHIVING_TABLE column is populated

SELECT SUBSTR(NAME,1,30) AS TABLENAME

, TYPE

, SUBSTR (ARCHIVING_SCHEMA,1,8) AS ASCHEMA

, SUBSTR(ARCHIVING_TABLE,1,18) AS ARCHIVING_TABLE
FROM SYSIBM.SYSTABLES
WHERE NAME IN ('POLICY_BASE','POLICY_ARCHIVE')

TABLENAME TYPE ASCHEMA ARCHIVING_TABLE Before Disable Archive
POLICY_BASE T DNET775 POLICY_ARCHIVE
POLICY_ARCHIVE R DNET775 POLICY_BASE

ALTER TABLE POLICY_BASE DISABLE ARCHIVE;

TABLENAME TYPE ASCHEMA ARCHIVING_TABLE

POLICY_BASE T After Disable Archive

0:0\4

P 7 el \

Archive Transparency Global Variables ...

. Built-in Global Variables that impact archival tables & processing

Defined as CHAR(1) NOT NULL DEFAULT ‘N’
READ authority granted to PUBLIC

SYSIBMADM.GET_ARCHIVE

. Determines if SELECTs against Archive Enabled (Base) Tables
automatically UNION ALL the associated Archive Table

« 'Y'includes the UNION ALL to Archive Tables
« Packages must be bound ARCHIVESENSITVE(YES)

SYSIBMADM.MOVE_TO_ARCHIVE

« Determines if deleted rows of Archive Enabled Tables are inserted
into associated Archive Tables

« Y':INSERT and UPDATE not allowed against the Archive Enabled

(Base) Tables
. ‘B INSERT and UPDATE allowed against the Base Tables

Archive Transparency

These settings for BIND will control the sensitivity of the SYSIBMADM.GET_ARCHIVE global
variable:

- ARCHIVESENSITIVE (default YES) — packages (No space between ARCHIVE and
SENSITIVE))

. BIND PACKAGE

. REBIND PACKAGE

« REBIND TRIGGER PACKAGE

. CREATE TRIGGER (implicit trigger package)

- ARCHIVE SENSITIVE (default YES) — UDFs and Stored Procedures (space between
ARCHIVE & SENSITIVE)

« CREATE FUNCTION (SQL scalar)

« ALTER FUNCTION (SQL scalar)

. CREATE PROCEDURE (SQL native)
. ALTER PROCEDURE (SQL native)

If you dREBIND a package and change ARCHIVESENSITIVE, all copies of the package will be
purge

APREUSE and APCOMPARE are valid options l
You can set the EXPANSION_REASON in the Access Path repository y ‘
DB2I Panels support ARCHIVESENSITIVE VXX

Archive Transparency Example

-Archive all rows where START_DATE less than December 31, 2010

EMPL TYPE PLCY COPAY START DATE TIMESTAMPl EMPL_LAST_NAME

A207 HMO P667 $10 2007 01-01 2013 07-30- 20 07.33. 136433 ______________
A208 HMO P667 $10 2008-01-01| [2013-07-30-20.07.33.137805| =-=-===---eaaaa-
A209 HMO P667 $10 2009-01-01| [2013-07-30-20.07.33.139949| ----------—---
A210 HMO P667 $10 2010-01-01] R013-07-30-20.07.33.141584] --------------
A211 HMO P667 310 2011-01-01 2013-07-30-20.07.33.144117 ----—----—-———--
A212 HMO P667 $10 2012-01-01 2013-07-30-20.07.33.153135 ---------—=—==--

Archive-enabled
table has 6 rows

=We set the Global variable MOVE_TO_ARCHIVE to Y’ SET SYSIBMADM.MOVE_TO_ARCHIVE pmmyer

START_DATE is prior to December 31, 2010

=The rows that were deleted from the base table are inserted into the archive table
*The Timestamp in the Archive Table has the time the row was archived, not the time in the base table

SELECT * FROM POLICY_BASE;

EMPL_TYPE PLCY COPAY STARTDATE TIMESTAMPl EMPL_LAST_NAME
————————— s et S T e et
A211 HMO P667 $10 2011-01-01 2013-07-30-20.
A212 HMO P667 $10 2012-01-01 2013-07-30-20.

SELECT * FROM POLICY_ARCHIVE;

EMPL TYPE PLCY COPAY |START_DATE | TIMESTAMPL

————————— ittt e B e B ettt 2
A207 HMO P667 $10 |2007-01-01 | 2013-07-30-20.
A208 HMO P667 $10 |2008-01-01| 2013-07-30-20.
A209 HMO P667 $10 |2009-01-01 | 2013-07-30-20.
A210 HMO P667 $10 |2010-01-01| 2013-07-30-20.

Archive Transparency Example ...

= To select data from both the base and archive tables

= Set GET_ARCHIVE global variable to Y’ before the select statement
— Can add an indicator column (ex. BASE_ARCHIVE CHAR(01)) to both tables
to indicate from where the row was sourced
— Base column defaults to one value (Ex. “B”)
— INSERT Trigger on the Archive column to set a different value (Ex. “A”)

SET SYSIBMADM.GET_ARCHIVE = "Y',
SELECT * FROM POLICY_BASE;

EMPL TYPE PLCY COPAY START_DATE TIMESTAMPL EMPL_LAST_NAME
————————— e e e e e el

A211 HMO P667 $10 2011-01-01 2013-07-30-20.07.33.144117 ----------mmmmm
A212 HMO P667 $10 2012-01-01 2013-07-30-20.07.33.153135 ---------mmmmmm
A207 HMO P667 $10 2007-01-01 2013-07-30-20.07.33.216716 —---——-——————--n
A208 HMO P667 $10 2008-01-01 2013-07-30-20.07.33.227317 --—---————————-
A209 HMO P667 $10 2009-01-01 2013-07-30-20.07.33.227768 —----------mmmmm
A210 HMO P667 $10 2010-01-01 2013-07-30-20.07.33.227787 ==----mmm---e-a-

+
1
1
1
1
1
1
1
1
1

+

=To select data from only the base table
= Set GET_ARCHIVE global variable to ‘N’ before the select statement

SET SYSIBMADM.GET_ARCHIVE = 'N';
SELECT * FROM POLICY_BASE;

EMPL TYPE PLCY COPAY START_DATE TIMESTAMPL EMPL_LAST_NAME
————————— e et T e T it
A211 HMO P667 $10 2011-01-01 2013-07-30-20.07.33.144117 -----=-=--=-=--
A212 HMO P667 $10 2012-01-01 2013-07-30-20.07.33.153135 —------ooooommm ‘

Archive Transparency Example ...

« Searched UPDATEs will only update base table rows whether the
GET_ARCHIVE issetto Y or N

. Inthe first example, we set the GET_ARCHIVE to Y’ so that the
SELECT will retrieve rows from both

- The Base and Archive tables, and you can see that only the
base rows were updated

SET SYSIBMADM.GET_ARCHIVE = 'Y';
UPDATE POLICY_BASE SET COPAY = '§15°;
SELECT * FROM POLICY_BASE;

EMPL TYPE PLCY COPAY START_DATE ARCHIVE_TIMESTAMP EMPL_LAST_NAME

2007-01-01 2013-07-30-20.07.33.216716
A208 HMO P667 $10 2008-01-01 2013-07-30-20.07.33.227317 ---------------
A209 HMO P667 $10 2009-01-01 2013-07-30-20.07.33.227768 ---------------
A210 HMO P667 $10 2010-01-01 2013-07-30-20.07.33.227787 ---------------

Archive Transparency Restrictions

. Restrictions
— LOAD utility will not allow REPLACE option if the table is archived-enabled
- Columns can not be ALTERed, RENAMEd or DROPped in either a base or archive table
- IfMOVE_TO_ARCHIVE = Y’, INSERT, UPDATE & MERGE against the base
- PERIOD can not be added to a base or archive table
- A foreign key can not be defined on an archive table
- ROTATE partitions
~ MQT
- Row Permissions and Column Masks
- CLONE table

- A data change statement cannot reference temporal table in same statement as reference to archive
table

- Positioned UPDATESs and Positioned/Searched DELETESs against base tables not allowed when
« GET_ARCHIVE =Y’ and
. Bound ARCHIVESENSITIVE YES

- If the target of the INSERT is a view that is defined with the WITH CHECK OPTION, the definition of
the view must not reference an archive-enabled table

- If you use a DYNAMIC SENSITIVE SCROLLable cursor, you can run with GET_ARCHIVE=N’, ‘

but if you run with GET_ARCHIVE="Y" you get -525 SQL error “
23
Q@

S

Archive Transparency ...

When the BIND is performed with an Archive Enabled Table
We create two sections in the package when ARCHIVESENSITIVE is YES

. First section - Base table only

« Second section - Base table and archive table UNION’ed ALL together

ARCHIVESENSITIVE only refers to GET_ARCHIVE sensitivity
« Whenthe GET_ARCHIVE global variable is set to ‘N’
- DB2 will use the base table only section
« Whenthe GET_ARCHIVE global variable is set to Y’
- DB2 will use the base and archive table section
When MOVE_TO_ARCHIVE is setto Y’

. DB2 will move rows to archive table on a DELETE even if
ARCHIVESENSITIVE BIND option is set to NO

When archiving data, you would usually set GET_ARCHIVE to ‘N’ and

MOVE_TO_ARCHIVE as ‘Y’

« This prevents data not being archived if the program tells it to archive l

Archive Transparency EXPLAIN ...

*In our example, Data in SYSPACKSTMT has
—SECTNO = 1 for archive-enabled table only and

—SECTNO = 3 for archive-enabled table UNIONed with archive table

— STATEMENT stored as the original statement with EXPANSION_REASON of ‘A

SELECT SECTNO,SEQNO, STMTNO,EXPANSION_REASON AS EXP,STATEMENT

FROM SYSIBM.SYSPACKSTMT
WHERE NAME = 'HHRDARC'
ORDER BY 1;

SECTNO SEQNO ETMTNO EXP STATEMENT
0 0 0
1 1 52 DECLARE CSR1 SENSITIVE DYNAMIC SCROLL CURSOROR SELECT EMPL , ARCHIVE_TIMESTAMP FROM POLICY_BASE
1 3 79 OPEN CSR1
1 4 83 FETCH CSRL INTO : H, : H
1 5 112 FETCH CSRL INTO : H, : H
2 2 T SET GET ARCHIVE = ; H
3 b 52 A DECLARE CSR1 SENSITIVE DYNAMIC SCROLL CURSOR OR SELECT EMPL , ARCHIVE_TIMESTAMP FROM POLICY_BASE

/0‘

i
P SN

Archive Transparency EXPLAIN ...

=Here you can see that there are two sections in the package in PLAN_TABLE
=Section 1 is the base section and will be used when GET_ARCHIVE='N’
=Section 3 is the expanded section and will be used when GET_ARCHIVE =Y’

=More information is available in
*DSN_STATEMNT_TABLE
*DSN_STAT_FEEDBACK
*DSN_STRUCT_TABLE
*DSN_DETCOST_TABLE

SELECT
SECTNOI,
QBLOCKNO,
SUBSTR(TNAME,1,12) AS TABLE_NAME,
TABNO,
QBLOCK_TYPE,
TABLE_TYPE,
EXPANSION_REASON
FROM DNET775 . PLAN_TABLE
WHERE PROGNAME = 'HHRDARC'
ORDER BY SECTNOI,QBLOCKNO;

PLAN_TABLE (selected columns)

SECTNOI QBLOCKNO TABLE_NAME

POLICY_BASE
POLICY_ARCHI

wwwkE
iR R

POLICY_BASE

TABNO

ROMNR

QBLOCK_TYPE TABLE_TYPE EXPANSION_

REASON
SELECT T
NCOSUB T A
UNIONA ~ ———mmmmme A
NCOSUB T A

@,

il

..

{
A)

Archive Transparency EXPLAIN

« EXPANSION_REASON added to the following tables
- DSN_COLDIST_TABLE
- DSN_DETCOST_TABLE
- DSN_FILTER_TABLE
- DSN_FUNCTION_TABLE
- DSN_KEYTGTDIST_TABLE
- DSN_PGRANGE_TABLE
-~ DSN_PGROUP_TABLE
- DSN_PREDICATE_SELECTIVITY
- DSN_PREDICAT _TABLE
- DSN_PTASK_TABLE
- DSN_QUERYINFO_TABLE
- DSN_QUERY_TABLE
- DSN_SORTKEY_TABLE
-~ DSN_SORT_TABLE
~ DSN_STATEMENT_CACHE_TABLE
- DSN_STATEMNT_TABLE

- DSN_STRUCT_TABLE ‘
- DSN_VIEWREF_TABLE l‘

- PLAN_TABLE P SN

Archive Transparency Comparison

« Archive Transparency
- Works one a single table
- Deletes the entire row from the base table
- Inserts the deleted row into a DB2 archive table
- May not satisfy legal archival requirements
. IBM InfoSphere Optim Data Growth Solution
- Works on business objects

- Can delete selected rows (keep customer, delete orders) from
the base table

- Writes row to a non updateable extract file

- Satisfies legal archival requirements

The next step in big data starts with IBM. o ’

e

