
© 2015 IBM Corporation

Application-enabling features of
DB2 10 and 11 for z/OS

Tridug User’s Group Meeting

April 8, 2015

Charles Lewis

DB2 for z/OS Advisor

IBM Mid-Atlantic Business Unit

lewisc@us.ibm.com

© 2015 IBM Corporation

The aim of this presentation

 To help ensure that you are aware of recently

delivered DB2 for z/OS features that can boost

agility and productivity with respect to application

development

2

© 2015 IBM Corporation

Agenda (1)

 DB2 10 application-enabling features

– Temporal data support

– Enhanced SQL user-defined functions

– RETURN TO CLIENT cursors

– OLAP moving aggregates

– LOB enhancements

– Implicit casting of character string and numeric values

– Timestamp extensions

– XML enhancements

3

© 2015 IBM Corporation

Agenda (2)

 DB2 11 application-enabling features

– Autonomous native SQL procedures

– Array parameters (and variables) for SQL procedures

(and user-defined functions)

– Temporal special registers and temporal support for

views

– Global variables

– Transparent DB2-managed data archiving

– New grouping options: GROUPING SETS, ROLLUP,

CUBE

– DB2 integration with Hadoop-managed data

– XQuery support for XML data
4

© 2015 IBM Corporation

Application enabling features

of DB2 10 for z/OS

5

© 2015 IBM Corporation

Temporal data support

 Allows you to give a time dimension to data in a DB2 table

 Two flavors:

– System time: DB2 maintains a history table associated with a base table,

and will insert into the history table the “before” version of a row every

time a base table row is changed via update or delete

• DB2 also maintains “from” and “to” timestamp values in base and history table

rows, showing when a row in the history table was current, and when a row in

the base table became current

– Business time: a dimension that shows when data in a row is valid from

a business perspective (e.g., a product price that will go into effect next

year)

• You maintain business time values, but DB2 can help by preventing FROM

and TO business time period “overlaps” (so one version of a given row will be

valid from a business perspective at any given time)

– You can combine system and business time in one table (“bi-temporal”)

6

© 2015 IBM Corporation

More on temporal data support

 SELECT syntax extended to include the time dimension of a table

 Example: “What was the coverage associated with insurance

policy number 127348 at 10 AM on February 24, 2010?”

SELECT COL1, COL2,,,

FROM POLICY

FOR SYSTEM_TIME AS OF TIMESTAMP ‘2010-02-24

10.00.00’

WHERE POLICY_NUM = ‘127348’;

Can specify BUSINESS_TIME if table has

that dimension

Alternatively, can specify FROM and TO, or

BETWEEN two timestamp values

7

© 2015 IBM Corporation

Advantages of temporal data support

 System time makes it easy to provide an audit

history of data changes in a DB2 table

 Business time enables “forward looking” data

analysis possibilities

– Real-world example: forecasting future profit margins using

prices that will go into effect at a later time

 DB2-provided temporal capabilities GREATLY

increase programmer productivity versus “do it

yourself” temporal data functionality

 DB2-implemented temporal table functionality

delivers better performance than the do-it-yourself

alternative

8

© 2015 IBM Corporation

Enhanced SQL user-defined functions (UDFs)
 Prior to DB2 10, the “logic” in a SQL scalar UDF was restricted to

what you could code in the RETURN part of CREATE FUNCTION,

and that was quite limited

– RETURN could not contain a SELECT statement

– RETURN could not include a column name

 You were basically limited to receiving a value (or values) as

input, transforming that value (or values) arithmetically and/or

with scalar functions, and returning the result of that

transformation

– Example:

CREATE FUNCTION KM_MILES(X DECIMAL(7,2))

RETURNS DECIMAL(7,2)

LANGUAGE SQL

…

RETURN X*0.62;

You can still create a UDF like this one,
but DB2 10 enabled you to do much more
with UDFs written in SQL

9

© 2015 IBM Corporation

Enhanced SQL UDFs (continued)
 Starting with DB2 10, the RETURN part of a SQL scalar UDF can

contain a scalar fullselect

RETURN(SELECT WORKDEPT FROM EMP WHERE EMPNO = P1);

 Also new with DB2 10: the RETURNS part of a SQL scalar UDF can

contain a compound SQL statement, in which variables can be

declared and which can include logic flow control statements such

as IF and WHILE

BEGIN

DECLARE VAR1, VAR2 CHAR(10);

SET VAR1 = …;

IF P1 = …;

RETURN VAR2;

END@

 Also new with DB2 10: SQL table UDFs, which return a result set
10

© 2015 IBM Corporation

RETURN TO CLIENT cursors

 Prior to DB2 10, a cursor in a stored procedure could be declared

WITH RETURN TO CALLER, allowing the result set rows to be directly

fetched only by the direct caller of the stored procedure

– Example: program PROG_A calls stored procedure PROC_B, which

calls procedure PROC_C, which has a WITH RETURN TO CALLER

cursor

– PROC_B can directly fetch rows from the cursor, but PROG_A cannot

• If PROG_A needs the result set, PROC_C can put it in a temporary table, and

PROG_A can get the rows from that temp table

– Clunky from a programming perspective, and not optimal for performance

 DB2 10: stored procedure can declare a cursor WITH RETURN TO

CLIENT

– Makes result set rows directly FETCH-able by “top-level” program (i.e.,

the one that initiated a chain of nested stored procedure calls)

11

© 2015 IBM Corporation

Previous slide’s point, in a picture…

 Before DB2 10:

 With DB2 10:

Program XYZ

Stored proc A

Stored proc B

DECLARE C1 CURSOR…

CALL

CALL

WITH RETURN TO CALLER

Program XYZ

Stored proc A

Stored proc B

DECLARE C1 CURSOR…

CALL

CALL

WITH RETURN TO CALLER

WITH RETURN TO CLIENT

Still an option with
DB2 10, if this is the
behavior you want

12

© 2015 IBM Corporation

OLAP moving aggregates

 A new (with DB2 10) SQL syntax that allows:

– Partitioning of a result set (e.g., by name)

– Ordering of rows within result set partitions (e.g., by date)

– Generation of aggregate values based on the “moving” current

position within a set of rows (e.g., sum of sales for the current

row plus the two preceding rows)

– Example:

SELECT NAME, DATE, UNITS_SOLD,

SUM(UNITS_SOLD) OVER(PARTITION BY NAME

ORDER BY DATE

ROWS BETWEEN 2 PRECEDING AND CURRENT ROW) SUM

FROM PRODUCT_SALES;

The desired
aggregate
function

The desired result set
partitioning value

The desired ordering of
rows within result set
partitions

The desired scope of aggregation as DB2
moves through the result set partitions

13

© 2015 IBM Corporation

The result of the SELECT on the previous slide

NAME DATE UNITS_SOLD SUM

Jones 2015-01-10 7 7

Jones 2015-01-11 8 15

Jones 2015-01-12 5 20

Jones 2015-01-13 6 19

Smith 2015-01-10 4 4

Smith 2015-01-11 9 13

Smith 2015-01-12 8 21

Smith 2015-01-13 5 22

Sum of this row’s

UNITS_SOLD (5) plus the

UNITS_SOLD values of the

preceding two rows in the

result set partition (7 and 8)

14

© 2015 IBM Corporation

LOB enhancements: Inline Lobs
 Prior to DB2 10, every bit of every value in a LOB column had to be

physically stored in a separate LOB table space (the LOB values

logically appear to be in the base table rows)

 With DB2 10, a LOB column’s definition can include a specification

of the amount of space in the base table that can be occupied by

LOB values

– The portion (if any) of a value over the limit is stored in LOB table

space

 Great for a LOB column for which relatively few values are truly large

– Can significantly improve the performance of LOB-reading and LOB-

inserting programs (and utilities) when most of a LOB column’s values

can be completely in-lined

– Also allows creation of index on expression on in-lined portion of a

CLOB column (using the SUBSTR)

• Example: if contracts are stored in a CLOB column, and if data in bytes 10

through 20 is always the contract number, can build index on that
15

© 2015 IBM Corporation

Lob enhancements: utilities

 Variable-block spanned (VBS) record format now supported for data

sets used for table UNLOAD and LOAD (referring to SYSREC data

set)

– What this means: you can unload a table with a LOB column (or

columns) and have ALL of the data – LOB and non-LOB – go into a

single data set

– And reverse is true for LOAD (i.e., data – LOB and non-LOB values –

can be loaded from a single input data set

• Before DB2 10, had to unload individual LOB values to members of a PDS,

or to individual files in the z/OS UNIX System Services file system (and

reverse was true for LOAD)

• DB2 10 spanned record support greatly simplifies use of UNLOAD and

LOAD for tables with LOB columns, and substantially boosts performance

 DB2 10 also delivered support for online REORG of LOB table space

with SHRLEVEL(CHANGE)

16

© 2015 IBM Corporation

Implicit casting of character, numeric values

 Consider this statement:

SELECT 1 CONCAT ‘+’ CONCAT 1 CONCAT ‘=‘ CONCAT 2

FROM SYSIBM.SYSDUMMY1;

 In a pre-DB2 10 environment, that statement gets this result:

SQLCODE = -171, ERROR: THE DATA TYPE, LENGTH,

OR VALUE OF ARGUMENT 1 OF CONCAT IS INVALID

 In a DB2 10 (new-function mode) system, you get this:

• 1+1=2

 Works assignment (SET) statements, too (but not for special

registers)

 Numeric values are implicitly cast to VARCHAR, character values

are implicitly cast to DECFLOAT(34)

– Why? Because VARCHAR and DECFLOAT(34) are compatible

with all other character and numeric data types, respectively

17

© 2015 IBM Corporation

Timestamp extensions

 New with DB2 10: timestamp values down to the picosecond

(that’s a trillionth of a second)

– One reason this was needed: mainframe engines are so fast now

that microsecond-level timestamps (often defined as unique keys

in DB2 tables) can regularly produce duplicate values

 Also new with DB2 10: variable-precision timestamps

– From 0 (no fractions of a second) to 12 (picosecond-level

precision), with 6 being the default

– Syntax: TIMESTAMP(n)

 Another DB2 10 enhancement: TIMESTAMP(n) WITH TIME ZONE

– New data type

– Sample value: ‘2012-10-03-10.15.00.123456-05:00’
Difference between

local time and UTC

18

© 2015 IBM Corporation

XML enhancements

 With DB2 10, you can specify in the definition of a table the XML schema

that is to be used to validate data inserted into an XML column

– No longer have to invoke DB2-supplied user-defined function to accomplish

schema validation

– Additionally, DB2 10 XML schema validation is done “in the DB2 engine”

• Better performance, and zIIP-eligible

 And, you can update part of an XML document (versus replacing the whole

thing) via new XMLMODIFY built-in function

– Can insert a node into an XML document, replace a node, delete a node, or

replace values of a node

 Also, the CHECK DATA utility can check on the structural validity of XML

documents in an XML table space

– Pre-DB2 10: only checked consistency between base table and XML table

space

19

© 2015 IBM Corporation

Application enabling features

of DB2 11 for z/OS

20

© 2015 IBM Corporation

Autonomous native SQL procedures

 A DB2 11 native SQL procedure can function as an autonomous

transaction

– How it’s done: AUTONOMOUS option specified in CREATE

PROCEDURE (or ALTER PROCEDURE) statement

• Specified instead of COMMIT ON RETURN YES/NO

– An autonomous SQL procedure commits on returning to the calling

program, but (unlike the case when COMMIT ON RETURN YES is in

effect) that commit does NOT affect the calling program’s unit of work

– An autonomous SQL procedure’s unit of work (UOW) is independent of

the calling program’s UOW – if the calling program’s UOW is rolled

back, data changes made by autonomous SQL procedure will not be

rolled back

• Very useful if you require that a data update be accomplished when a

transaction executes, and you need that update to persist even if the

transaction subsequently fails

– A restriction: one autonomous SQL procedure can’t call another
21

© 2015 IBM Corporation

Array parameters (and variables) for SQL
procedures (and UDFs)

 DB2 11: array parameters can be passed to (and/or received

from), and array variables can be declared in, native SQL

procedures (and the same is true for SQL user-defined

functions)

– Call to SQL procedure with array input or output parameter can

come from a SQL PL routine, a Java program, or a .NET

program (for latter two, via IBM Data Server Driver type 4 driver)

• If .NET caller, array must be input parameter

– An array in this context is a form of a DB2 user-defined data type

(UDT) – you create it, then you use it

– Built-in functions are provided to:

• Construct arrays

• Derive tables from arrays

• Obtain information about arrays

• Navigate array elements
22

© 2015 IBM Corporation

More on array parameters and variables

 There are two array types:

– Ordinary

• Has a user-defined upper bound on number of elements (defaults to

INTEGER high value)

• Elements referenced by their ordinal position in the array

– Associative

• No user-defined upper bound on number of elements

• Elements are ordered by and can be referenced via array index values

• Values in a given array index are INTEGER or VARCHAR, are unique, and

don’t have to be contiguous

CREATE TYPE PHONENUMBERS AS DECIMAL(10,0) ARRAY[50];

Max number of elements in ordinary
array (defaults to about 2 billion)

Data type of values in the array

This is an ordinary array – associative array would have data type of index
values (e.g., VARCHAR(8)) after ARRAY keyword

23

© 2015 IBM Corporation

Temporal special registers

 The need: what if you want a program (or just a SQL statement) to have

an other-than-current view of temporal data, but you don’t want to

change the program’s code?

 Solution: two new special registers delivered with DB2 11

– CURRENT TEMPORAL SYSTEM_TIME

– CURRENT TEMPORAL BUSINESS_TIME

 When set to a non-null value, has the effect of adding the following to a

SELECT statement that targets a temporal-enabled table (in this case, use

of system time is assumed):

– FOR SYSTEM_TIME AS OF CURRENT TEMPORAL SYSTEM_TIME

 Example of setting special register’s value:

SET CURRENT TEMPORAL SYSTEM_TIME = CURRENT TIMESTAMP – 1 YEAR;

(this would result in a program having a view of data that was current as of one year ago)

24

© 2015 IBM Corporation

More on temporal special registers

 A special register non-null value, once set, remains in effect for

that particular session (thread) until it’s changed (setting to null

has the effect of “turning the special register off”)

– But if set within a routine (stored procedure or UDF), the new value is not

passed back to the invoking application

 SYSTIMESENSITIVE, BUSTIMESENSITIVE bind options determine

whether or not SQL statements (static or dynamic) issued

through a package will be affected by temporal special registers

– Default value is YES

 If CURRENT TEMPORAL SYSTEM_TIME is set to non-null value

for a thread, data modification statements targeting system time-

enabled tables are not allowed

25

© 2015 IBM Corporation

Temporal support for views

Base table View

SQLCODE -4736

With DB2 11, you can use temporal predicates when referring to a view defined

on a temporal table (but you can’t use a temporal predicate in defining a view)

Temporal predicate

Temporal predicate

26

© 2015 IBM Corporation

Global variables

 The need: how can you pass data values from one SQL statement to

another in the context of a thread?

– Before DB2 11:

• Do it with application code (values placed into variables by one SQL

statement are copied to variables used as input to another SQL statement)

• Want a trigger to be able to access those values? Not easy…

– DB2 11: use global variables

 You can create your own global variables using the new CREATE

VARIABLE statement

– DB2 11 also provides a few built-in global variables:

• SYSIBM.CLIENT_IPADDR

• SYSIBMADM.GET_ARCHIVE

• SYSIBMADM.MOVE_TO_ARCHIVE

More on this archive stuff
momentarily…

27

© 2015 IBM Corporation

Global
variables
example

Assign value to a
(previously created)
global variable

Reference the global variable

28

© 2015 IBM Corporation

Transparent DB2-managed data archiving

 The need: get old and “cold” data out of a table (for better SQL and

utility performance), but retain deleted rows in an archive table and

transparently enable retrieval of archived rows

 DB2 11 will do this for you

 What a DBA does (suppose that table TAB_A is to be archive-

enabled):

– Create an archive table that looks just like TAB_A (same number of

columns, same order of columns, same column names and

definitions)

– Tell DB2 to associate the archive table with TAB_A (assume that you

named the archive table TAB_A_ARCHIVE):

ALTER TABLE TAB_A ENABLE ARCHIVE USE TAB_A_ARCHIVE;

Meaning: infrequently
referenced

29

© 2015 IBM Corporation

More on DB2-managed data archiving

 Temporal and archive tables are mutually exclusive

 New built-in global variables affect interaction with archive-enabled

tables (default value for both is ‘N’):

– SYSIBMADM.GET_ARCHIVE – if ‘Y’ then SELECT targeting

archive-enabled table will automatically include UNION ALL with

archive table

– SYSIBMADM.MOVE_TO_ARCHIVE – if ‘Y’ or ‘E’ then rows deleted

from archive-enabled table will be inserted into archive table (if ‘Y’

then INSERT/UPDATE/MERGE disabled for base table)

 ARCHIVESENSITIVE bind option determines whether statements

(static or dynamic) will be affected by value of

SYSIBMADM.GET_ARCHIVE global variable (default is YES)

– ARCHIVE SENSITIVE option on create of native SQL procedure or

UDF does the same thing

30

© 2015 IBM Corporation

New grouping option: GROUPING SETS

Example: determine average total compensation for WorkDept, Job, and EdLevel sets

Basically means, “group
by each of these
columns, in turn”

31

© 2015 IBM Corporation

New grouping option: ROLLUP
Example: determine average total compensation for the various hierarchies of

WorkDept, Job, and EdLevel, and for overall set

• Column order in GROUP BY expression affects result set

• ORDER BY helps with readability

You get a grouping by all values of
column 1, column 2, and column 3; a
grouping by all values of column 1
and column 2; and a grouping by all
values of column 1

You also get an aggregate
over all qualifying rows

32

© 2015 IBM Corporation

New grouping option: CUBE

 Example: determine average total compensation for various combinations of

WorkDept, Job, and EdLevel

– Column order in GROUP BY expression doesn’t matter

– ORDER BY helps with readability

You get grouping by all values of all three
columns, by all values of all combinations
of two of the three columns, and by all
values of each individual column

You also get an aggregate over all qualifying rows

33

© 2015 IBM Corporation

DB2 integration with Hadoop-managed data

 Hadoop: an open source software framework that supports data-intensive
distributed applications

 Two main components
– Hadoop distributed file system

– MapReduce engine

• Powerful, but tedious from a development
perspective

• “Like the assembly language of Hadoop”

34

© 2015 IBM Corporation

DB2 11: new UDFs for Hadoop integration

IBM BigInsightsA new user-defined function (UDF)
allows a data analytics job,
specified in JAQL, to be submitted
to a BigInsights server

A new table UDF reads the output
of the analytics job and returns it
in relational form

Available now for
Linux on z Systems

35

© 2015 IBM Corporation

XQuery support for XML data

 Pre-DB2 11: XPath expressions can be used to navigate

through XML documents and to address parts of XML

documents

– XPath is a subset of XQuery, which is a richer language for

accessing XML documents

– XPath limitations often necessitated using a mixture of XPath

and SQL, and that could make query coding more difficult

 DB2 11 includes XQuery support, providing a richer set of

XML expressions that can be used with the built-in functions

XMLQUERY, XMLEXISTS, and XMLTABLE

– Queries can be expressed purely using XQuery, versus a

mixture of XPath and SQL, and that can boost programmer

productivity

 XQuery support was retrofitted to DB2 10 via APARS

PM47617 and PM47618
36

© 2015 IBM Corporation

In conclusion…

 DB2 10 and 11 delivered a lot of new application-

enabling features

– How many of these are being used at your site?

– How many could be put to good use at your site?

37

© 2015 IBM Corporation38

