
Session code:

Advanced Query Tuning with IBM Data Studio

Tony Andrews
Themis

E16

Thu, May 03, 2018 (09:20 AM - 10:20 AM) Platform: Both Db2 LUW and z/OS

1

1

Objectives

By the end of this presentation, you should:

• Know how to use Data Studio to help improve query performance.

• Know the different access paths and understand how they are
presented

• Understand filter factors

• Better understand how the Db2 optimizer determines access paths

• Better understand how to use and navigate Data Studio for SQL
tuning

2

Improving SQL Performance

• System Tuning

• Change the SQL

• Gather / Alter Statistics

• Change Physical Design

Improving SQL performance can be done in one of at least 4 ways. System tuning may be done

to adjust the parameters under which the Db2 subsystem operates to effectively match the

workload. Altering system parameters, tuning temporary space, and adjusting bufferpool sizes

and thresholds are all examples of this type of tuning. An appropriately tuned system can affect

an improvement in performance. Most of the time, however, other factors dominate a tuning

scenario. The SQL itself must be written in a way that may be processed efficiently by the

database. An appropriate level of statistics about the data must be gathered to tell the optimizer

about the nature of the data being accessed. Lastly, the way the physical objects are defined

must be aligned with the types of queries that are to be performed.

3

Developers Should Focus On

• Appropriate use of indexes

• Predicate Types

• Access Path Choice

• Filter Factors

• Known Statistics

• Data Outliers

• Clustering order of data

• Knowing ‘why’ any table space scan

• Stage 1 Predicates / Stage 2 / Residual

• Minimal Sorts

• Possible Rewrites

Developers should focus on all of these areas when tuning a query.

No amount of system tuning, however, can recover the resources wasted by a poor database

design or poor access paths generated by the Db2 optimizer. This presentation focuses on

optimization and tuning at the SQL level. In general, we want the optimizer to generate an

access path that eliminates as much data from consideration as early as possible in the process,

takes advantage of indexes, and has up to date statistics to help its access path choices..

Creating appropriate indexes on columns or groups of columns that are commonly used to

identify needed data can significantly reduce the I/O and CPU needed to retrieve a result.

Paying attention to well written predicates are important (Stage 1 vs Stage 2)

Paying attention to any filter factors that are not close to the reality of data being processed.

Knowing the clustering order of the tables is so important. Having tables clustered by primary

keys is not always what we want for applications. How is the table queried? What are the SQL

statements and joins to a table?

Look at the queries that gather medium to large result sets, not OLTP queries to help determine.

4

Catalog Statistics
Object Definitions

Access Path

Access Path Hint

Rid Pools, Sort Pools

CPU Speed, # CPUs

Optimizer

Through the Data Manipulation Language (DML) the user of a Db2 database supplies the

“WHAT”; that is, the data that is needed from the database to satisfy the business requirements.

Db2 then uses the information in the Db2 Catalog to resolve “WHERE” the data resides. The Db2

Optimizer is then responsible for determining the all important “HOW” to access the data most

efficiently.

Ideally, the user of a relational database is not concerned with how the system accesses data. This

is probably true for an end user of Db2, who writes SQL queries quickly for one-time or occasional

use. It is less true for developers who write application pro-grams and transactions, some of which

will be executed thou-sands of times a day. For these cases, some attention to Db2 access methods

can significantly improve performance.

Db2’s access paths can be influenced in four ways:

♦ By rewriting a query in a more efficient form.

♦ By creating, altering, or dropping indexes.

♦ By updating the catalog statistics that Db2 uses to estimate access costs.

♦ By utilizing Optimizer Hints.

As you can see there are many variables that can affect an access path choice outside of the actual

SQL code. It is always best to have a test environment that looks like production (at least data

statistics wise) so when queries and packages are eventually promoted to production, there

are no last minute surprise/different access paths.

5

Explain

Optimizer

EXPLAIN PLAN SET QUERYNO = 10 FOR

SELECT LASTNAME,SALARY

FROM EMP

WHERE EMPNO BETWEEN '000000' AND '099999'

AND SALARY < 40000

OR

z/OS

PLAN_TABLE

DSN_STATEMNT_TABLE

DSN_FUNCTION_TABLE

& a bunch of “other” tables

BIND PACKAGE with option

EXPLAIN(YES) LUW

EXPLAIN_STATEMENT

EXPLAIN_PREDICATE

& a bunch of “other” tables

The process of asking the Db2 optimizer to describe an access path that was chosen (or will be

chosen) for a query is called an explain. When we run an explain, the output is placed in Db2

tables that we may then view.

A PLAN_TABLE is a regular Db2 table that holds results of an EXPLAIN. IBM’s SQL

Reference Guide contains a format for the PLAN TABLE and a description of all the columns.

Each user running an explain needs access to a plan table either by owning one directly or

through a secondary authid. In Db2 Version 8, aliases may also be used to allow users to share a

single set of explain tables.

Although the plan table is required to run explains, there are also several other explain tables

which may optionally be created to hold explain data. These extra tables will be populated

during an explain if they exist.

The DSN_STATEMNT_TABLE contains information about the total perceived cost of the query

being explained. This cost data may be compared for several iterations of refinement for a query

to see if it might improve the performance. Costs may also be tracked over time.

Additionally, as of V8 there are many more explain tables that will be populated if they are

created. IBM has recently documented the contents of some of these extra tables. Their primary

purpose is to supply additional information for optimization products like V8 Visual Explain, V9

Optimization Service Center (OSC) and Data Studio, and V10 Data Studio.

6

Data Studio Explaining Queries

Open Visual

Explain

Select Subsystem

Connection

You can run your query from any database connection. Select Configuration for which sub

system you want to execute against. You must be connected to the sub system. In this example 2

sub systems are currently connected to.

You type in your query and click on the ‘Open Visual Explain’ button (top right)

The Visual Explain gets generated (bottom right)

To expand the Visual Explain, click the maximize

7

z/OS Data Studio Access Path Graphs

The access path graph shows the explain data for a query. Access path graphs are read left to

right, bottom to top. Each of the nodes on the graph represent a source of data or an operation

on data as it moves towards the result set. Each node may be clicked to provide details about

that node on the left side of the screen.

8

LUW Data Studio Access Path Graphs

The is the same query except explained in LUW. Notice:

Costing is in timerons: This is some proprietary algorithm that contains some weighing factors

between I/O and CPU.

Bottom numbers in the visual explain nodes are timeron costings. Top numbers are cardinality

numbers. For example the IXSCAN node shows 3 numbers.

- 13.56 for the timeron cost

- 1.085 estimated cardinality of RIDs that meet the criteria

- 2.00 cumulative I/O timeron cost

9

Data Studio Access Path Graphs

Sources of Data

In this graph, there are two nodes that indicate they are a source of data. Data is accessed by

doing an index scan of the XEMP03 index. Once appropriate rows are identified then the data in

the EMP table is retrieved using the identifiers from the index.

If one of these nodes is highlighted by clicking on it the catalog data about the object is

displayed on the left side of the screen. Statistical information is displayed as well as the

timestamp when statistics were last gathered when connected to a Db2 z/OS subsystem.

In Db2 LUW, there are different numbers that show within the nodes. For IXSCAN and FETCH

nodes: Costing is in timerons:

This is some proprietary algorithm that contains some weighing factors between I/O and CPU.

Bottom numbers in the visual explain nodes are timeron costings. Top numbers are cardinality

numbers. For example the IXSCAN node for this same query in LUW shows 3 numbers.

- 13.56 for the timeron cost

- 1.085 estimated cardinality of RIDs that meet the criteria

- 2.00 cumulative I/O timeron cost

By navigating the tree at the top left of the screen, information may be viewed about the table,

tablespace and any other indexes that exist on the referenced table.

10

Data Studio Access Path Graphs

If one of these nodes is highlighted by clicking on it, the catalog data about the object is

displayed on the left side of the screen. Statistical information is displayed as well as the

timestamp when statistics were last gathered.

By navigating the tree at the top left of the screen, information may be viewed about the table,

tablespace and any other indexes that exist on the referenced table.

11

Data Studio Access Path Graphs

Data Retrieval

Operations

The other nodes on the diagram represent operations on the data. If one of these nodes is

selected the left side of the screen will show the metrics that Db2 used in determining that this

was the appropriate access method. Predicate level data is shown as well as row estimates for

how many rows will be passed to the next operation. These estimates may then be compared to

reality to determine if the optimizer made a good choice.

Where do predicates get applied?

1 At the index level (IXSCAN) index predicates

2 At the data level (FETCH) data predicates

12

z/OS Stage 1, Stage 2 Predicates

Predicates in z/OS get pit into 2 categories, with stage 2 predicates on average about 10% more

expensive to evaluate. Many stage 2 predicates can be rewritten as stage 1 predicates, some

cannot. It is always important to know if there exists any stage 2 predicates within the query.

Db2 LUW does not have stage 2 predicates. They do however have residual predicates, being

the most expensive of predicates from this platform. Predicate types for LUW:

1) Range delimiting predicates: The start and stop key values in an index search. Evaluated by

the index manager.

2) Index sargable: Other index column predicates. These predicates are also evaluated by the

index manager.

3) Data sargable: Predicates applied not at the index level by the index manager, but evaluated at

the data level through the Data Management Services (DMS). Similar to z/OS stage 1.

4) Residual predicates: Predicates applied last and sometime requiring additional I/O (such as

large objects). They also are predicates that often times can be rewritten more efficiently. For

example: Subqueries with ANY, ALL, SOME, or IN). These predicates are evaluated by

Relational Data Services (RDS) and are the most expensive of the four categories of predicates.

Similar to z/OS stage 2.

13

z/OS Stage 2 Predicates Rewrites

value NOT BETWEEN COL1 AND COL2

value BETWEEN col expr and col expr

COL op ANY

COL op ALL

There are far fewer stage 2 predicates than in previous releases of Db2. Here a few of the many

that remain that can be controlled and rewritten by developers.

14

LUW Predicates – Sargeable (similar to S1)

Predicates in z/OS get pit into 2 categories, with stage 2 predicates on average about 10% more

expensive to evaluate. Many stage 2 predicates can be rewritten as stage 1 predicates, some

cannot. It is always important to know if there exists any stage 2 predicates within the query.

Db2 LUW does not have stage 2 predicates. They do however have residual predicates, being

the most expensive of predicates from this platform. Predicate types for LUW:

1) Range delimiting predicates: The start and stop key values in an index search. Evaluated by

the index manager.

2) Index sargable: Other index column predicates. These predicates are also evaluated by the

index manager.

3) Data sargable: Predicates applied not at the index level by the index manager, but evaluated at

the data level through the Data Management Services (DMS). Similar to z/OS stage 1.

4) Residual predicates: Predicates applied last and sometime requiring additional I/O (such as

large objects). They also are predicates that often times can be rewritten more efficiently. For

example: Subqueries with ANY, ALL, SOME, or IN). These predicates are evaluated by

Relational Data Services (RDS) and are the most expensive of the four categories of predicates.

Similar to z/OS stage 2.

Notice here that the HIREDATE – 7 DAYS is a stage 2 predicate in z/OS, yet Sargable in LUW.

15

Data Studio Access Path Graphs

Where do the filter factors come from ?
Do any frequency values exists for LASTNAME data?
Is it defaulting to 1/column cardinality?
FIRSTNME has 260 values. 1/260 = .0038

This screen shows filter factors for the index predicates. How did the optimizer come up with

.0024 for the LASTNAME column?

In the statistics, it shows there are 947 different LASTNAME values. This query is looking for 1

named ‘Smith’. Since LASTNAME is the first column of an index, it automatically calculates

the top 10 names in the data. The value ‘Smith’ is one of them and has .0024 percent of the data.

For FIRSTNME = ‘Joe’, all Db2 knows is that there are 260 different first names, and the query

is looking for 1 named ‘Joe’. Without any further information of specific first name values, it

assumes they are all evenly distributed, and takes 1/260 = .0038.

This 1/cardinality is common when using host variables and/or parameter markers ‘?’.

16

Data Studio Access Path Graphs

A great thing about clicking on the table node is the ability to see everything about the table:

- Table level statistics and object information

- Column attributes and statistics

- Indexes and their columns

- Tablespace attributes

- Partitioning Information

- Any special statistics like (Freqval, Histogram, Colgroup)

17

18

PLAN

NO

METHOD TNAME ACCESS

TYPE

MATCH

COLS

ACCESS

NAME

INDEX

ONLY

PREFETCH

1 0 EMP R 0 N S

SELECT EMPNO, LASTNAME, SALARY

FROM EMP

WHERE EMPNO BETWEEN ‘000000’ AND ‘099999’

AND SALARY < 40000

Tablespace Scan

Plan Table

Data Studio

Estimated number

of rows

Tablespace scans are illustrated through EXPLAIN by ACCESSTYPE = R and PREFETCH = S.

The first query on the previous page illustrates a tablespace scan. The query has a predicate,

however there are no matching indexes on the HIREDATE column.

Through the PLAN_TABLE output, there is no way to differentiate a segmented from a non-

segmented tablespace scan. A table-space must have been created as segmented in order to

benefit from the performance advantages. To change from non-segmented to segmented after a

table has been created, it must be dropped and recreated.

When Tablespace Scans are Appropriate

Tablespace scan access is selected by Db2 typically when;

♦A matching index scan is not possible because there are no indexes or there are no predicates

to that match the index columns.

♦A high percentage of the rows in the table qualify.

♦ The indexes that have matching predicates have low cluster ratios, making them efficient only

when a small number of rows qualify.

♦ The table is small, or the statistics say the table is small

The Visual Explain access path graph for a tablespace scan is also shown. Notice that Visual

Explain gives estimates of how many rows will remain at each level.

19

Why Would the Optimizer Choose a Table Space Scan?
1. Are any predicate(s) poorly coded in a non-indexable way that takes away any possible

index choices from the optimizer?

2. Do the predicates in the query not match any available indexes on the table? Know your
indexes on a table!

3. The table could be small and Db2 decides a table scan may be faster than index processing.

4. The catalog statistics could say the table is small. This is more common in test
environments where the Runstats utility is not executed very often.

5. Are the predicates such that Db2 thinks the query is going to retrieve a large enough
amount of data that would require a table scan? Some explain tools will show the number
of rows Db2 thinks will be returned in the execution of a query (the IBM Data Studio tool is
very good at this).

Developers should:

- Know their data (cardinalities, columns with uneven distributions of data, etc.)

- Know the indexes on tables involved in their queries

- Know the clustering order of data in their tables

- Know the partitioning of data in their tables

20

Why Would the Optimizer Choose a Table Space Scan?

6. Are the predicates such that Db2 picks a non-clustered index, and the rows needed are
scattered throughout the table file such that the number of data pages to retrieve is high
enough based on total number of pages in the table to require a table scan? Know how
data is physically clustered in the tablespace!

7. Are the tablespace files or index files physically out of shape and
need a REORG?

8, Are there no predicates? So the query wants all the rows.
9. Sometimes there are just too many conditions in the logic to return the

results needed any other way. This is quite typical with many predicates
that are OR’d together.

21

SELECT * FROM EMP

WHERE LASTNAME = ?

AND FIRSTNME = ‘Nichelle’;

z/OS Index Scan - Matching

XEMP032IEMP01

PREFETCHINDEX

ONLY

ACCESS

NAME

MATCH

COLS

ACCESS

TYPE

TNAMEMETHODPLAN

NO

N

PLAN_TABLE

Notice FF of
.00105 for
LASTNAME
Predicate.
1/947 = .00105

Matching Index scans are depicted in the PLAN_TABLE by ACCESSTYPE = I, I1, N, or

MX and MATCHCOLS > 0.

For a Matching Index Scan, Db2 has determined that the query uses predicates that match

index columns. In general, the matching predicates on the leading index columns are equal or

IN predicates. The predicate that matches the final index column can be an equal, IN, or a

range predicate (<, <=, >, >=, LIKE, or BE-TWEEN).

The query on the previous page illustrates matching index access. Assume the table EMP has

an index; XEMP03 on (LASTNAME, FIRSTNME, MIDINIT). The index XEMP03 is the

chosen access path for this query, with MATCHCOLS = 2. There are two equal predicates on

the first two columns of the index.

In Visual Explain the IXSCAN detail shows which predicates were used to match columns

along with their filter factors. Row estimates are computed and displayed based on the

available statistics for the table and index. This slide only shows the first matching predicate.

The value of MATCHCOLS is used to determine the number of columns Db2 can match to

predicates in the query. Typically, index access will be more efficient the greater the number

of matching columns.

Effort placed on proper index design can have a huge return on investment in terms of the

efficiency of Db2’s ability to utilize matching indexes to query predicates.

22

NXEMP031IEMP01

PREFETCHINDEX

ONLY

ACCESS

NAME

MATCH

COLS

ACCESS

TYPE

TNAMEMETHODPLAN

NO

SELECT * FROM EMP

WHERE LASTNAME = ‘Coldsmith’

AND MIDINIT = ‘R’;

INDEX XEMP03 on

(LASTNAME, FIRSTNME, MIDINIT)

Index Screening

Predicate

z/OS Index Screening

PLAN_TABLE

▪ Index Screening

Index screening predicates are specified on index key columns, but are not part of the matching

columns used to scan the index structure. These screening predicates improve index access by

reducing the number of rows that qualify while searching the index.

Assume the table EMP has an index; XEMP03 on (LASTNAME, FIRSTNME, MIDINIT);

The query on the previous page illustrates Db2s ability to use one of the two predicates matching

against the index, i.e. with MATCHCOLS = 1. Once Db2 determines that a symbolic key entry

matches on the predicate LASTNAME = ?, the predicate MIDINIT = ? can be applied during the

index scan to further qualify rows. This is the process known as index screening. If a row meets the

criteria of these screening predicates, the row will be retrieved. Once the data row has been

retrieved, predicates for columns not in the index can be applied.

▪ When Index Screening is used

♦When there are predicates available to apply against columns in the index to further qualify rows.

♦ The PLAN_TABLE does not directly tell when an index is screened. However, if the

MATCHCOLS is less than the number of in-dex key columns, this indicates index screening is

possible. Visual Explain does flag predicates where index screening is used.

23

z/OS Index Screening (cont)

24

SELECT * FROM EMP

WHERE EMPNO BETWEEN ‘000000’ and ‘099999’

LUW Index Scan - Matching (Start/Stop Keys)

You know when you have matching index access by seeing start and stop keys in the index

predicate information

25

SELECT * FROM EMP

WHERE LASTNAME = ‘Smith’

AND MIDINIT = ‘R’

LUW Index Screening

Index screening in LUW shows a Start position (matching of 1 in this example) and then the

other index predicate as a Sargable predicate.

26

z/OS Index Scan - Nonmatching

NXEMP030IEMP01

PREFETCHINDEX

ONLY

ACCESS

NAME

MATCH

COLS

ACCESS

TYPE

TNAMEMETHODPLAN

NO

PLAN_TABLE

SELECT * FROM EMP

WHERE FIRSTNME = ‘Michelle’

AND MIDINIT = ‘R’;

Nonmatching Index scans are described through EXPLAIN by ACCESSTYPE = I and

MATCHCOLS = 0.

In Visual Explain it is possible to see which columns are used as screening predicates in a

nonmatching index scan. Notice that MATCHCOLS shows up as zero in both the

PLAN_TABLE and Visual Explain.

When Nonmatching Index Access is used

Because there is little or no filtering, a nonmatching index scan is used. Sometimes called an

index scan:

♦When index screening is provided. In this case not all the data pages are accessed, but all

index pages are accessed. Then only those data pages that Db2 has determined qualified based

on the scanning and evaluating of the index predicates.

27

SELECT * FROM EMP

WHERE FIRSTNME = ‘Michelle’

AND MIDINIT = ‘R’;

z/OS Index Scan - Nonmatching

Note that on the visual Explain, a node ‘IXSCAN’ shows whether there is matching or not. So it

is very important to always click on the node to evaluate any matching and/or screening.

0 matching should be an indicator for further analysis to determine ‘Why’ no matching.

0 matching means the whole index file will be scanned.

28

SELECT LASTNAME* FROM EMP

WHERE FIRSTNME = ‘David’ and MIDINIT = ‘A’

LUW Index Scan – Non Matching (Sargable)

No Start/Stop

When you do not code the leading column of the index, and Db2 still chooses to use the

index, the other Predicates show up as non starting and stopping keys. In this case

SARGEABLE predicates against the index column(s).

29

Index Only Access

SELECT LASTNAME, FIRSTNME, MIDINIT

FROM EMP

WHERE LASTNAME LIKE 'Jo%'

If all the columns needed for a particular table in a query are available in an index, the optimizer

may be able to qualify and retrieve the columns from the index without going to the tablespace

at all. This is called index only access and may provide a significant performance improvement,

particularly when many rows need to be evaluated using a non-clustered index.

In this example only 1 column in XEMP03 is being used to qualify rows, but placing the

FIRSTNME and MIDINIT columns in the index provides significant benefit to this query.

Note that there is no table node for the EMP table in this diagram since only the index is used.

30

z/OS Nested Loop Join

A nested loop join is described in the PLAN_TABLE through METHOD = 1. An inner join is

described in the PLAN_TABLE through JOIN_TYPE = ‘ ‘. An outer join is described in the

PLAN_TABLE through JOIN_TYPE <> ‘ ‘.

In Visual Explain there will be a join node labeled NLJOIN to describe a nested loop join. In the

example shown the optimizer estimates that only 1 row will qualify from the department table

and match to only 1 row on the employee table. This likely explains why this join method was

chosen.

31

Nested Loop Join

LUW Nested Loop Join

A nested loop join is described in the PLAN_TABLE through METHOD = 1. An inner join is

described in the PLAN_TABLE through JOIN_TYPE = ‘ ‘. An outer join is described in the

PLAN_TABLE through JOIN_TYPE <> ‘ ‘.

In Visual Explain there will be a join node labeled NLJOIN to describe a nested loop join. In the

example shown the optimizer estimates that only 1 row will qualify from the department table

and match to only 1 row on the employee table. This likely explains why this join method was

chosen.

32

z/OS Merge Scan Join

33

z/OS Hybrid Join

SELECT LASTNAME, PROJNO

FROM EMP E JOIN EMPPROJACT EPA

ON E.EMPNO = EPA.EMPNO

WHERE E.JOB = ‘FIELDREP’

Hybrid join works well when:

•The outer table qualifies many rows

•A non-clustered index exists on the join key for the inner table

•Many rows will be eliminated as a result of the join

34

Which Join Method

1) Depends on the predicates

2) How much filtering on the tables

3) Possible indexes

4) Optimization level

5) Clustering of table data

Hybrid join works well when:

•The outer table qualifies many rows

•A non-clustered index exists on the join key for the inner table

•Many rows will be eliminated as a result of the join

35

Sort Activities

✓ORDER BY

✓GROUP BY

✓DISTINCT

✓UNION

✓Subqueries

✓JOIN

Data Sorts

✓ List Prefetch

✓ Multiple Index Access

✓ Hybrid Join

RID Sorts

Whenever a sort is seen in the explain output, 2 questions should always come to mind:

1. Is the sort needed in this query

2. If so, how many rows are going into the sort. The more rows and columns selected, the

more expensive the sort.

36

z/OS Data Sorts via Data Studio

Sorts are represented in Visual Explain by red nodes that indicate the reason for the sort and an

estimate of the number of records to be processed by the sort. The number 51834 represents the

guesstimated number of rows going into the sort based on the ‘Where’ criteria.

37

LUW Data Sorts via Data Studio

Sorts are represented in Visual Explain by red nodes that indicate the reason for the sort and an

estimate of the number of records to be processed by the sort.

Predicate Generation Through Transitive Closure

If A must equal B

And A must be RED,

Then B must also be RED.

The Premise

38

Predicate Generation Through Transitive Closure Cont’d

Index XDEPT1 on DEPTNO

Index XDEPT3 on ADMRDEPT

Single Table Db2 Generated Predicate

SELECT

FROM DEPT

WHERE DEPTNO = ADMRDEPT

AND ADMRDEPT = ‘A00’ ;

SELECT

FROM DEPT

WHERE DEPTNO = ADMRDEPT

AND ADMRDEPT = ‘A00’

AND DEPTNO = ‘A00’ ;

XDEPT1 index chosen !

39

Predicate Generation Through Transitive Closure Cont’d

Index XDEPT1 on DEPTNO

Index XDEPT3 on ADMRDEPT

Single Table Db2 Generated Predicate

SELECT

FROM DEPT D, EMP E

WHERE D.DEPTNO = E.DEPTNO

AND D.DEPTNO IN (‘A00’

‘B01’,

‘C11’) ;

SELECT

FROM DEPT D, EMP E

WHERE D.DEPTNO = E.DEPTNO

AND D.DEPT IN (‘A00’,

‘B01’,

‘C11’)

AND D.DEPTNO IN (‘A00’,

‘B01’,

‘C11’) ;

40

41

Predicate Transitive Closure

SELECT

FROM DEPT

WHERE DEPTNO = ADMRDEPT

AND ADMRDEPT = ‘A00’ ;

Note: Index on

DEPTNO chosen

Visual Explain will show all predicates used by the optimizer, both those included in the query

and those generated by predicate transitive closure.

42

LUW Predicate Transitive Closure

Visual Explain will show all predicates used by the optimizer, both those included in the query

and those generated by predicate transitive closure.

43

Tuning a Query

Tune a Query

In z/OS you have to go into ‘Tune a query’ in order to see the original and transformed SQL.

44

Tuning a Query

Notice some of the options are inaccessible in the free standalone version. Click on the ‘Select

What to Run’ to initiate further tuning of the SQL statement.

Also notice settings for:

SQLID - Set to the owner of plan table s for the tool to use

SCHEMA – Set to the owner of tables involved in the query

45

Tuning a Query Output

All the output from ‘Tune a Query’.

Note some are not available in ‘no

charge’ version.

After executing the query tuning, options open up for analysis (Formatted Query, Access Plan

Graph, Summary Report, Statistics Advisors, etc.)

46

Statistics Advisor

Click on this line to expand

statistics recommendations

Opens Advisor

details tab to view

information

Statistics Advisories are noted by priorities. Each can be clicked on to provide more details and

specific recommendations.

47

Statistics Advisor Summary Report

Statistics Advisories are noted by priorities. Each can be clicked on to provide more details

And specific recommendations.

48

z/OS Tune a query – Query Transformation

Open formatted query is one the best features in query tuning. Db2 optimization has always

rewritten (transformed) queries a t times in the past, and now the rewrite (if any) is being

externalized.

This is especially important with the V9 Global Query Optimization enhancement.

49

z/OS Tune a query – Query Transformation

Note:
Non Correlated

Note:
Correlated

Open formatted query is one the best features in query tuning. Db2 optimization has always

rewritten (transformed) queries at times in the past, and now the rewrite (if any) is being

externalized. But by no means should we cut and paste the transformed query into the code.

This is because along with the Transformed rewrite are other ‘hidden’ pieces of information that

get passed to the access path selection step. The transformed query does tell the whole

transformation.

This is especially important with the V9 Global Query Optimization enhancement.

50

Case #1: 2 Possible Indexes

XEMP03 Cols

51,834 * .001 * .0057 = < 1 row

XEMP02 Col

51,834 * .0092 = 477 rows
Winner!

SELECT * FROM EMP

WHERE LASTNAME = 'Smith'

AND FIRSTNME = 'Joe'

AND DEPTNO = 'A00';

IBM Data Studio can often tell us the ‘Why’ of a certain access path choice. In this example Db2

chose the XEMP03 index because based on statistics, it was showing the lest amount of rows

that met the criteria. So the explain looks good, but could run better ……

In this example there are two possible indexes that could be used to retrieve the desired result.

Index XEPM02 contains column DEPTNO while index XEMP03 contains a concatenation of

LASTNAME, FIRSTNME and MIDINIT. Db2 could choose to use multiple index access, but

this is unlikely unless neither index provides a high degree of filtering. By computing the filter

factors for the 2 available indexes using the formula for uniform distribution, Db2 determines

that about 447 rows will qualify for the DEPTNO predicate and less than one row will qualify

for the combination of lastname and firstname requested. Since XEMP03 is perceived to narrow

the result to one row, it is chosen as the index to be used for qualifying the rows.

51

Comparing Estimates with Reality

SELECT COUNT(*)

FROM EMP

WHERE LASTNAME = 'Smith'

AND FIRSTNME = 'Joe';

1,289 rows

(Db2 est. <1)

SELECT COUNT(*)

FROM EMP

WHERE DEPTNO = 'A00';

4 rows

(Db2 est. 477)

If this query is not performing optimally, it may be useful to compare the filter factors presented

in Data Studio with actual row counts on the tables involved. In this case, the optimizer’s

estimate of 1 row for index XEMP03 was incorrect (1289 rows actually exist). The estimate for

XEMP02 of 477 qualifying rows was also incorrect (actual count was only 4).

In this case a poor filter factor estimate led to the wrong index being selected.

52

Additional Statistics

RUNSTATS INDEX (THEMIS82.XEMP02)

KEYCARD FREQVAL NUMCOLS 1 COUNT 5 BOTH

RUNSTATS INDEX (THEMIS82.XEMP03)

KEYCARD FREQVAL NUMCOLS 2 COUNT 5 MOST

A00 has far fewer rows than

the average dept

Joe Smith has far more rows than the

average name combination

Uneven distribution of data in this table is the reason for the poor filter factor estimates. In this

case department A00 has far fewer occurrences than the average department. Joe Smith also

occurred far more frequently than the average name combination. Additional index statistics

may be gathered to inform the optimizer of the statistical outliers. In the first control card, the

runstats utility is being requested to capture both the 5 most frequently occurring values and the

5 least frequently occurring values for DEPTNO and store these values in SYSCOLDIST. The

second control card is requesting the top 5 combinations for the first two columns of XEMP03

(LASTNAME and FIRSTNME).

53

Frequency Stats

Once these statistics have been gathered they may be viewed using Data Studio in the Coldist

folder for the column statistics. The appropriate filter factor for department A00 is .000077

rather than .0092 as calculated using uniform distribution rules. This leads Db2 to estimate that

about 4 rows will qualify for this predicate, which is exactly what the actual count revealed.

54

Result of Adding Frequency Stats

Better Index

Chosen

With the additional statistics in place, the optimizer chooses XEMP02 to accomplish the filtering

instead of XEMP03 resulting in better performance. More rows are eliminated from

consideration earlier in the process using this access path.

55

Case #2: Join Order
SELECT *

FROM EMP E, PROJ P

WHERE E.EMPNO = P.EMPNO

AND E.COMM = 0

AND P.PRSTAFF > 3

A similar problem can occur when joining tables together even when the predicates involved are

not indexed. In this example, the EMP table is being joined to the PROJ table. Local predicates

exist on both tables, so Db2 must make what appears to be a narrow decision on which table

should be accessed first.

There exist an index on PRSTAFF with some frequency values statistics.

56

Comparing Estimates with Reality

SELECT COUNT(*)

FROM EMP

WHERE COMM = 0;

51,803 rows

(Db2 est. 1,620)

SELECT COUNT(*)

FROM PROJ

WHERE PRSTAFF > 3;

14,598 rows

(Db2 est.

50,242 * .2906 =

14,600)

Filter Factor

Rows on EMP

The optimizer calculates that 1620 rows will qualify in the EMP table using formulas for

uniform distribution. Actual counts reveal that 51,803 rows actually exist that meet the

requested condition. Zero appears to be a default value for COMM that occurs much more often

than any other value. This is a fairly common condition. Many columns have default or null

values that occur much more often than anything else.

57

Additional Statistics

RUNSTATS TABLESPACE THEMIS82.TS00EMP

TABLE(THEMIS82.EMP)

COLUMN(COMM)

COLGROUP(COMM) FREQVAL COUNT 1

SORTDEVT SYSDA SORTNUM 4

COMM = 0 appears far more often

than other values appear

Runstats needed on non

uniform distribution of

COMM data

The syntax presented here will gather column level statistics for the COMM column and also

gather the most frequently occurring value for COMM (COLCOUNT 1). Note that runstats

must sort the data to obtain this information so sort parameters may need to be included in the

syntax.

Also notice that only a count of 1 is needed since there is only 1 value that contains 99% of the

data. For developers in coding predicate logic using this column, they would then need 2

different queries:

If :COMM-HV = 0 then

SELECT …….

FROM EMP

WHERE …….

AND COMM = 0;

ELSE

SELECT …….

FROM EMP

WHERE …….

AND COMM = :HV-COMM

AND COMM <> 0;

END IF;

58

Adjusted Join Order

SELECT *

FROM EMP E, PROJ P

WHERE E.EMPNO = P.EMPNO

AND E.COMM = 0

AND P.PRSTAFF > 3

When the additional statistics are provided, the optimizer understands the true nature of the data

on the EMP table and chooses the PROJ table to be the first accessed since it provides much

better filtering.

Again, if different values come in for COMM and they are put into a host variable, then

whenever the value is > 0, the following would need to be executed:

SELECT …….

FROM EMP

WHERE …….

AND COMM = :HV-COMM

AND COMM <> 0;

V11 Sparse Indexing
Example 1

SELECT LASTNAME, DEPTNAME

FROM EMP E JOIN

DEPT D

ON E.DEPTNO = D.DEPTNO

WHERE E.SALARY > 45000

Sparse

Index

z/OS sparse index processing is similar to hash joining on other platforms (like Db2 LUW).

This is usually a good thing that the optimizer chooses.

The index is built in memory (called In-Memory-Data-Cache). Could overflow to a work

file if the entries in the sparse index are too many.

Sparse index/hash join can beat out nested loop if the inner table (after any local predicates)

can be contained in-memory (default for MXDTCACH is 20MB), and the join has enough

rows from the outer to inner to "pay back" the build cost of the sparse index/hash.

The benefit of sparse index processing is that each lookup to the inner (using the hash of the

key) happens in RDS (stage 2). Probing the inner table index (even if index only) has higher

overhead than probing the hashed sparse index.

59

V11 Sparse Indexing
Example 2WITH X AS

SELECT DEPTNO,

AVG(SALARY) AS AVG_SAL,

SUM(SALARY) AS SUM_SAL,

COUNT(*) AS NUM_EMPS

FROM THEMIS81.EMP

GROUP BY DEPTNO)

SELECT E.EMPNO,

E.LASTNAME,

E.DEPTNO,

E.SALARY,

X.AVG_SAL,

X.SUM_SAL

FROM THEMIS81.EMP E,

X

WHERE E.DEPTNO = X.DEPTNO
ORDER BY E.DEPTNO,E.SALARY DESC

z/OS sparse index processing is similar to hash joining on other platforms (like Db2 LUW).

This is usually a good thing that the optimizer chooses.

The index is built in memory (called In-Memory-Data-Cache). Could overflow to a work

file if the entries in the sparse index are too many.

Sparse index/hash join can beat out nested loop if the inner table (after any local predicates)

can be contained in-memory (default for MXDTCACH is 20MB), and the join has enough

rows from the outer to inner to "pay back" the build cost of the sparse index/hash.

The benefit of sparse index processing is that each lookup to the inner (using the hash of the

key) happens in RDS (stage 2). Probing the inner table index (even if index only) has higher

overhead than probing the hashed sparse index.

60

61

Thank You for Attending!

“There is always time for an Explain”

“I have noticed that when the developers get
educated, good SQL programming standards are in

place, program walkthroughs and Explains are executed
correctly, incident reporting stays low, CPU costs do not get out

of control, and most performance issues are found before
promoting code to production.”

Session code:

Please fill out your session

evaluation before leaving!

Tony Andrews
Themis Inc.
tandrews@themisinc.com

E16

62

Please fill out your session

evaluation before leaving!

62

