
1

Access Path Stability on

Db2 for z/OS

Tony Andrews

tandrews@themisinc.com

Agenda

• Review of the history

• Plan Management

• Access Path Compare

• Access Path Reuse

• Bind / Explain Output

• Best Practices

2

Stability History

3

Access Path Stability

• Db2 9
– DSNZPARM PLANMGMT

– REBIND PACKAGE

PLANMGMT (BASIC | EXTENDED | OFF)

– SYSPACKAGE holds current

– REBIND PACKAGE

SWITCH(PREVIOUS) or SWITCH(ORIGINAL)

Access path stability features were first introduced in Db2 9 for z/OS in the maintenance stream.

More complete support came in Db2 10. The original feature consisted of a new bind option

called PLANMGMT (short for plan management). I have chosen to refer to this feature as

“Access Path Stability” instead of “Plan Stability” to avoid confusion with the Db2 object called

a “plan”. The PLANMGMT bind option is valid on REBIND PACKAGE only (not BIND

PACKAGE). The idea of this feature is to save off previous “copies” of a package (all internal

structures in SPT01 including the access path) when REBINDing a package. A value of BASIC

will preserve the “previous” copy of the package and a value of EXTENDED will preserve both

the “previous” and “original” copies. In Db2 9, the catalog only contained information about the

“current” copy of the package. None of the meta-data about the extra “copies” was available

until the copy was activated via a SWITCH. To make an old “copy” of the package active you

can REBIND with the SWITCH option.

4

Access Path Stability

• Db2 10
– SYSPACKCOPY catalog table

• COPYID 1 = PREVIOUS

• COPYID 2 = ORIGINAL

– REBIND APRETAINDUP

– Native SQL stored procedure packages

– APCOMPARE added

– APREUSE added

– EXPLAIN PACKAGE statement added

– BIND / REBIND with EXPLAIN(ONLY) added

Db2 10 added catalog support for the inactive “copies” of a package. SYSIBM.SYSPAKCOPY

contains all the same information as SYSIBM.SYSPACKAGE for the inactive copies. A column

called COPYID will indicate which is the “previous” and which is “original”.

Additionally, the option APRETAINDUP was introduced that will allow us to avoid storing extra

copies of a package when the access paths come out the same. Support for native stored

procedure packages was also introduced.

Also introduced were several more bind options for stability along with the ability to gather

explain data in new situaitons.

5

BIND vs REBIND

From the

Db2 11

Command

Reference

It is important to remember the distinction between BIND and REBIND. BIND is typically

performed when the source code of a program changes. A new DBRM is produced (and likely a

new “version”). BIND then generates access paths and runtime structures for a new package.

REBIND will be run when the application code has not changed, but something else in the

environment has changed. The SQL remains the same but access paths selection is re-run and

new run time structures are generated. REBIND will typically be run when RUNSTATS have

changed, a new index is built, objects have been dropped and recreated, or a new release of Db2

is installed.

Some of the stability features will work only on REBIND while others are valid for both BIND

and REBIND.

6

7

Program Preparation

Precompile

BIND

DBRM

Package

Compile/Link

Modified

Source

Load

Module

Source DCLGENs

Version Specified

Here

This picture shows the program preparation process for a typical statically bound program. The

precompiler separates the host language code from the SQL. The SQL is placed in a Database

Request Module (DBRM). If package versioning is being used then a version is assigned by the

precompiler and placed in the DBRM. The DBRM is then run through a BIND which produces

a package.

8

Package Versioning

PROG1

VERSION V1

PROG1

VERSION V2

PROG1

VERSION V1

PROG1

VERSION V2

If package versioning is being employed and the same program is compiled multiple times then

the BIND process will not overlay the old “versions” but will instead add new ones. None of

this is new, but we review it here to distinguish package “versions” from the “copies” that will

be produced by the PLANMGMT bind option. Each “version” of a package may now have up

to 3 “copies”.

Plan Management

9

PLANMGMT

REBIND PACKAGE (loc.collection.package.(version))

PLANMGMT(OFF)

Replace contents of package

with new control structures

Access Paths may change!

The PLANMGMT option is the first of the new stability options and is only valid for REBIND.

It was introduced in Db2 9 after GA. The original default was OFF. This default was changed in

Db2 10 to EXTENDED and may be controlled with subsystem parameter PLANMGMT. When

PLANMGMT(OFF) is used then no previous of this package version will be retained. Access

path selection will be invoked and the old control structures will be discarded. This describes

the behavior of REBIND prior to Db2 9.

10

PLANMGMT

REBIND PACKAGE (loc.collection.package.(version))

PLANMGMT(BASIC)

Add a new “copy” of the

package with new access

paths. Retain the “previous”

copy in SPT01.

When a value of BASIC is used the “previous” copy of the package version will be retained in

SPT01. A new “copy” of the package will be created and will immediately become the “active”

copy of the package version. We can then switch back to the “previous” if we don’t like the

results of the REBIND. Each subsequent REBIND with this option will discard the “previous”

and generate a new “current” copy.

11

PLANMGMT

REBIND PACKAGE (loc.collection.package.(version))

PLANMGMT(EXTENDED)

Add a new “copy” of the package with

new access paths. Retain the “previous”

AND “original” copy in SPT01.

Previous: most recent copy.

Original: the oldest copy… usually the one from “bind”

If there is no “original” when this is first done, the old

“current” will be copied to both “previous” and “original”.

Default beginning

in Db2 10

If PLANMGMT(EXTENDED) is used an additional copy of the package is retained. In addition

to the “current” and “previous” copy, an “original” will also be retained. The “original” will be

the oldest copy of the package that is available (usually as a result of the BIND). This copy is

never overlaid by subsequent BINDs with EXTENDED, while the “previous” copy will be

replaced each time.

12

Catalog Support

• SYSIBM.SYSPACKCOPY contains rows for the “previous” and

“original” copies

• A copy of SYSPACKAGE for package copies not currently in use.

• Timestamps of when they were bound also available

The meta-data for “copies” of a package that are not currently is stored in

SYSIBM.SYSPACKCOPY. This catalog table was added in Db2 10.

13

Switching between copies

REBIND PACKAGE (loc.collection.package.(version))

SWITCH(PREVIOUS)

“Previous” becomes

current and current

becomes “previous”.

REBIND PACKAGE (loc.collection.package.(version))

SWITCH(ORIGINAL)

“Original” becomes current

and “current” becomes

“previous”. “Original”

remains unchanged.

We can switch back to other “copies” of the package with the REBIND commands shown here.

Pay attention to what happens in the inactive copies.

14

Considerations

• When a package goes invalid… Think about which copies

of the package may be affected.

– If a table is dropped, all copies of the dependent packages will be

marked invalid.

– If an index is dropped, only copies that included that index in an

access path will be affected.

• Switching to ORIGNIAL eliminates the “previous” copy.

• Please distinguish between package versions and copies.

Each version may have the three copies.

15

FREE with PLANMGMTSCOPE

FREE PACKAGE (loc.collid.name.(version))

PLANMGMTSCOPE(ALL)

Frees all copies of the

package (Default).

FREE PACKAGE (loc.collid.name.(version))

PLANMGMTSCOPE(INACTIVE)

Frees only the previous

and original copies.

The FREE command will free all copies of the package. Using the FREE command with option

PLANMGMTSCOPE(INACTIVE) will only remove the “previous” and “original” copies of the

package.

16

Duplicate Access Paths

REBIND PACKAGE (loc.collection.package.(version))

PLANMGMT (EXTENDED) APRETAINDUP(NO)

Discard “previous” copy if

access paths did not

change.

Keeping multiple copies of packages in Db2 might have a significant impact on the size of

SPT01 in the Db2 directory. One way to control this is the APRETAINDUP option on REBIND.

Setting this option to “NO” will discard the previous copy if the access paths do not change as a

result of the REBIND.

17

How does it work?

• An copy of the PLAN_TABLE entries for the package is stored

internally (not readable by humans) at bind time in SPT01

beginning in Db2 9.

• This allows the BIND / REBIND process to compare access

paths across versions and copies.

• So many possibilities…

The APRETAINDUP option is enabled by the fact that Db2 now keeps an internal copy of the

plan table entries inside the package itself. This data is not directly readable by humans, but

enables Db2 to compare previous access paths to the new ones…. and so much more!

18

EXPLAIN PACKAGE

EXPLAIN PACKAGE

COLLECTION ’collection’

PACKAGE ‘package’

VERSION ‘version’

COPY ‘CURRENT’;

Externalizes the explain data

(PLAN_TABLE ONLY) for the package

into the owner’s PLAN_TABLE.

Access Paths as

they exist in

the current package

Because Db2 keeps internal copies of the PLAN_TABLE at BIND time it is now possible to see

the access paths even if the package was bound with EXPLAIN(NO). The SQL statement

shown here will externalize the PLAN_TABLE data from the package to an external

PLAN_TABLE. The access paths shown will be the ones chosen at BIND time regardless of

when the EXPLAIN statement is run.

19

EXPLAIN(ONLY)

BIND (or REBIND)

PACKAGE…

…

EXPLAIN(ONLY)

Explain the statements

against the current

environment without

producing a package

The EXPLAIN(ONLY) option on a BIND or REBIND will only produce access paths in the

explain tables without producing a package.

20

Compare Access Paths

21

Access Path Compare

BIND (or REBIND) PACKAGE…

…

APCOMPARE(NONE | WARN | ERROR)

Warning issued

if path changes

Bind fails if

any paths

change

For BIND, the comparison will be with the

version being bound (if it exists) or with the

most recent version available.

22

APCOMPARE (ERROR)

READY

DSN SYSTEM(DB1C)

DSN

REBIND PACKAGE(THEMISCL.LOTSASQ1.(2016-04-20-00.46.36.129541))

APCOMPARE(ERROR)

DSNT285I -BC DSNTBBP2 REBIND FOR PACKAGE = DB1C.THEMISCL.LOTSASQ1,

USE OF APCOMPARE RESULTS IN:

2 STATEMENTS WHERE COMPARISON IS SUCCESSFUL

2 STATEMENTS WHERE COMPARISON IS NOT SUCCESSFUL

0 STATEMENTS WHERE COMPARISON COULD NOT BE PERFORMED.

DSNT233I -BC UNSUCCESSFUL REBIND FOR

PACKAGE = DB1C.THEMISCL.LOTSASQ1.(2016-04-20-00.46.36.129541)

DSN

END

23

Evaluating the Failures

• REBIND the package with EXPLAIN(ONLY)

– Generates the PLAN_TABLE entries for the “new” access paths

• Run the EXPLAIN PACKAGE statement

– Generates the PLAN_TABLE entries for the “old” access paths

• Compare and evaluate

24

APCOMPARE(WARN)

READY

DSN SYSTEM(DB1C)

DSN

REBIND PACKAGE(THEMISCL.LOTSASQ1.(2016-04-20-00.46.36.129541))

APCOMPARE(WARN)

DSNT285I -BC DSNTBBP2 REBIND FOR PACKAGE = DB1C.THEMISCL.LOTSASQ1,

USE OF APCOMPARE RESULTS IN:

2 STATEMENTS WHERE COMPARISON IS SUCCESSFUL

2 STATEMENTS WHERE COMPARISON IS NOT SUCCESSFUL

0 STATEMENTS WHERE COMPARISON COULD NOT BE PERFORMED.

DSNT254I -BC DSNTBRB2 REBIND OPTIONS FOR

PACKAGE = DB1C.THEMISCL.LOTSASQ1.(2016-04-20-00.46.36.129541)

...

DSNT232I -BC SUCCESSFUL REBIND FOR

PACKAGE = DB1C.THEMISCL.LOTSASQ1.(2016-04-20-00.46.36.129541)

25

Access Path Reuse

26

Access Path Reuse

BIND (or REBIND) PACKAGE…

…

APREUSE(NONE | ERROR | WARN)

For BIND, the comparison will be with the version

being bound (if it exists) or with the most recent

version available.

Force reuse of previous

access paths. Bind error

occurs if this is not possible

New in Db2 11

Warn if reuse

not possible

The APREUSE(ERROR) bind or rebind option allows us to request that previous access paths be

used for the package. This is actually accomplished by passing the PLAN_TABLE entries from

the previous package as a hint to the current BIND or REBIND. The BIND fails if the hint is not

accepted by optimizer. The same rules for APCOMPARE apply when determining which

package is used for comparison. Db2 11 introduced APREUSE(WARN) which will allow the

package to be produced even when the hint fails. New paths are only produced for statements

where the hint fails.

27

Access Path Reuse

• For BIND, the comparison will be with the version being

bound (if it exists)

• or with the most recent version available

– DSNT292I message is issued

– Because the package versions differ, it is possible that not

all statements have a match.

– APREUSE only applies to statements that are identical

between the two versions. Statement numbers need not be

the same.

28

Access Path Reuse

DSN

REBIND PACKAGE(THEMISCL.LOTSASQ1.(2016-04-20-00.45.48.382660))

APREUSE(ERROR)

DSNT286I -BC DSNTBBP2 REBIND FOR PACKAGE = DB1C.THEMISCL.LOTSASQ1,

USE OF APREUSE RESULTS IN:

4 STATEMENTS WHERE APREUSE IS SUCCESSFUL

0 STATEMENTS WHERE APREUSE IS EITHER NOT SUCCESSFUL

OR PARTIALLY SUCCESSFUL

0 STATEMENTS WHERE APREUSE COULD NOT BE PERFORMED

0 STATEMENTS WHERE APREUSE WAS SUPPRESSED BY OTHER HINTS.

DSNT254I -BC DSNTBRB2 REBIND OPTIONS FOR

PACKAGE = DB1C.THEMISCL.LOTSASQ1.(2016-04-20-00.45.48.382660)

29

Access Path Reuse

• “Force” is such a harsh word…

• APREUSE will pass previous plan table into the bind as

an optimization hint

• Sometimes this doesn’t work…

– Indexes no longer available

– Query re-write different across different Db2

versions

30

Db2 12 Enhancements

• FREE only “original” or “previous” copies of a package or

only invalid copies

• SWITCH option will no longer allow you to switch to an

invalid copy

• APREUSESOURCE option will allow the REUSE hint to

be directed to the “previous” or “original”

• DSN_STATEMNT_TABLE columns will now tell you if

APREUSE was effective and which package was used

31

Best Practices

32

Support for Db2 Version Migration

• Many will simply REBIND everything using APREUSE(ERROR)

• A more thorough approach…

– REBIND everything using APCOMPARE(ERROR)

– REBIND packages failing above using EXPLAIN(ONLY)

– Analyze differences. For Db2 11 you will frequently see more

matching columns.

• Possible role for APREUSE(WARN)

33

Regular Change Control

• PLANMGMT(EXTENDED) everywhere with

possible use of APRETAINDUP(NO).

• APCOMPARE(WARN) or maybe (ERROR) in

production binds.

34

Tony Andrews
Themis Training

tandrews@themisinc.com

Twitter: @tonyandrews12

35

